Theoretical Aspects of Cosmic Acceleration

Mark Trodden
University of Pennsylvania

COSMO-2014
University of Chicago
Overview

• Motivations - background, and the problem of cosmic acceleration

• Logically possible approaches:
 • The cosmological constant
 • Dynamical dark energy
 • Modified gravity

• What are the theoretical issues facing any such approach? Screening mechanisms - focusing on the Vainshtein mechanism.

• An example: Galileons - origins and novel features

• A few comments.

This is a story in progress - no complete answers yet. Useful (hopefully) reference for a lot of what I’ll say is

Beyond the Cosmological Standard Model
Bhuvnesh Jain, Austin Joyce, Justin Khoury and MT
Simple Cosmology - a Reminder

Evolution of the universe governed by Einstein eqns

\[G_{\mu\nu}(g) = 8\pi G T_{\mu\nu} \]

Metric \quad Matter

Use simple metric for cosmology and model matter as a perfect fluid with energy density \(\rho \) and pressure \(p \)

\[H^2 \equiv \left(\frac{\dot{a}}{a} \right)^2 \propto \rho \quad \text{The Friedmann equation} \]

\[\frac{\ddot{a}}{a} \propto -(\rho + 3p) \quad \text{The “acceleration” equation} \]

Parameterize different matter by equations of state:

\[p_i = w_i \rho_i \]

When evolution dominated by type i, obtain

\[a(t) \propto t^{2/3(1+w_i)} \quad \rho(a) \propto a^{-3(1+w_i)} \quad (w_i \neq -1) \]
The Cosmic Expansion History

What does data tell us about the expansion rate?

We now know, partly through this data, that the universe is not only expanding ...

\[\ddot{a} > 0 \]

... but is accelerating!!

\[\dddot{a} > 0 \]

If we trust GR and recall that

\[
\frac{\dddot{a}}{a} \propto - (\rho + 3p)
\]

Then we infer that the universe must be dominated by some strange stuff with \(p < -\rho/3 \). We call this dark energy!
Cosmic Acceleration

\[\frac{\ddot{a}}{a} \propto -(\rho + 3p) \]

So, writing \(p = w \rho \), accelerating expansion means \(p < -\rho/3 \) or \(w < -1/3 \)

(See Foley talk for better, more up-to-date plots)
The Cosmological Constant

Vacuum is full of virtual particles carrying energy. Equivalence principle (Lorentz-Invariance) gives

$$\langle T_{\mu\nu} \rangle \sim -\langle \rho \rangle g_{\mu\nu}$$

A constant vacuum energy! How big? Quick & dirty estimate of size only by modeling SM fields as collection of independent harmonic oscillators and then summing over zero-point energies.

$$\langle \rho \rangle \sim \int_0^{\Lambda_{UV}} \frac{d^3k}{(2\pi)^3} \frac{1}{2} \hbar E_k \sim \int_0^{\Lambda_{UV}} dk \ k^2 \sqrt{k^2 + m^2} \sim \Lambda_{UV}^4$$

Most conservative estimate of cutoff: \(\sim 1 \text{ TeV} \). Gives

$$\Lambda_{\text{theory}} \sim (\text{TeV})^4 \sim 10^{-60} \ M_{\text{Pl}}^4 < \Lambda_{\text{obs.}} \sim M_{\text{Pl}}^2 H_0^2 \sim 10^{-60} (\text{TeV})^4 \sim 10^{-120} \ M_{\text{Pl}}^4$$

An enormous, and entirely unsolved problem in fundamental physics, made more pressing by the discovery of acceleration!

At this stage, fair to say we are almost completely stuck! - No known dynamical mechanism, and a no-go theorem (Weinberg) to be overcome.
Lambda, the Landscape & the Multiverse

Anthropics provide a logical possibility to explain this, but a necessary (not sufficient) requirement is a way to realize and populate many values. The string landscape, with eternal inflation, may provide a way to do this.

An important step is understanding how to compute probabilities in such a spacetime.

No currently accepted answer, but quite a bit of serious work going on. Too early to know if can make sense of this.

How to Think of This

A completely logical possibility - should be studied. Present interest relies on
- String theory (which may not be the correct theory)
- The string landscape (which might not be there)
- Eternal inflation in that landscape (which might not work)
- A solution of the measure problem (which we do not have yet)

If dynamical understanding of CC is found, would be hard to accept this.
If DE is time or space dependent, would be hard to explain this way.

Worthwhile mapping out the space of alternative ideas.
Once we allow dark energy to be dynamical, we are imagining that it is some kind of honest-to-goodness mass-energy component of the universe.

It isn’t enough for a theorist to model matter as a perfect fluid with energy density ρ and pressure p (at least it shouldn’t be enough at this stage!)

$$T_{\mu\nu} = (\rho + p) U_\mu U_\nu + pg_{\mu\nu}$$

Our only known way of describing such things, at a fundamental level is through quantum field theory, with a Lagrangian. e.g.

$$S_m = \int d^4x \ L_m[\phi, g_{\mu\nu}] \quad \quad L_m = \frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) \partial_\nu \phi - V(\phi)$$

$$T_{\mu\nu} \equiv -\frac{2}{\sqrt{-g}} \frac{\delta S_m}{\delta g^{\mu\nu}} \quad \quad R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi GT_{\mu\nu}$$
Maybe there’s some principle that sets vacuum energy to zero. Then dark energy might be inflation at the other end of time.

Use scalar fields to source Einstein’s equation - **Quintessence**.

\[L = \frac{1}{2} \left(\partial_\mu \phi \right) \partial^\mu \phi - V(\phi) \]

\[\rho_\phi = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} (\nabla \phi)^2 + V(\phi) \]

\[\ddot{\phi} + 3H \dot{\phi} + \frac{dV}{d\phi} = 0 \]

Small slope \(\rho_\phi \approx V(\phi) \approx \text{constant} \)

\[w = - \left[\frac{2V(\phi) - \dot{\phi}^2}{2V(\phi) + \dot{\phi}^2} \right] \]
Issues and Advantages

• Such an idea requires its own extreme fine tuning to keep the potential flat and mass scale ridiculously low - challenge of technical naturalness

• Can be tackled if field respects an approximate global symmetry (e.g. a pseudo-Goldstone boson) [Frieman, Hill, Stebbins, Waga]

• But then there can be other fascinating constraints - e.g. such a field can have derivative couplings to the SM, and a slowly varying field leads to rotation of polarized radio light from distant galaxies [Carroll]

• On the other hand, some models, including those with exotic kinetic structure (k-essence), have the possibility of addressing the coincidence problem, and so there may be advantages. [Armendariz-Picon, Mukhanov, Steinhardt; Caldwell. …]
Are we Being Fooled by Gravity?

We don’t *really* measure \(w \) - we infer it from the Hubble plot via

\[
w_{\text{eff}} = -\frac{1}{1 - \Omega_m} \left(1 + \frac{2}{3} \frac{\dot{H}}{H^2} \right)
\]

Maybe, if gravity is modified, can infer value not directly related to energy sources (or perhaps without them!)

One example - Brans-Dicke theories

\[
S_{BD} = \int d^4x \sqrt{-g} \left[\phi R - \frac{\omega}{\phi} (\partial_\mu \phi) \partial^\mu \phi - 2V(\phi) \right] + \int d^4x \sqrt{-g} L_m(\psi_i, g)
\]

\(\omega > 40000 \) (Signal timing measurements from Cassini)

As proof of principle, can show that (with difficulty) can measure \(w < -1 \), even though no energy conditions violated.
Modifying Gravity

Maybe cosmic acceleration is *entirely* due to corrections to GR!

One thing to understand is: what degrees of freedom does the metric $g_{\mu\nu}$ contain in general?

- **The graviton**: a spin 2 particle
- **Scalar fields**: spin 0 particles
- **A vector field**: a spin 1 particle

We’re familiar with this. These are less familiar.

GR pins vector A_μ and scalar ϕ fields, making non-dynamical, and leaving only familiar graviton $h_{\mu\nu}$

Almost any other action will free some of them up

More interesting things also possible - massive gravity - see later

[Carroll, Duvvuri, M.T. & Turner, (2003)]

Theoretical Aspects of Cosmic Acceleration

Mark Trodden, U. Penn
A common Language - EFT

How do theorists think about all this? In fact, whether dark energy or modified gravity, ultimately, around a background, it consists of a set of interacting fields in a Lagrangian. The Lagrangian contains 3 types of terms:

- **Kinetic Terms:** e.g.
 \[
 \partial_\mu \phi \partial^\mu \phi \quad F_{\mu\nu} F^{\mu\nu} \quad i \bar{\psi} \gamma^\mu \partial_\mu \psi \quad h_{\mu\nu} \epsilon^{\mu\nu;\alpha\beta} h_{\alpha\beta} \quad K(\partial_\mu \phi \partial^\mu \phi)
 \]

- **Self Interactions** (a potential)
 \[
 V(\phi) \quad m^2 \phi^2 \quad \lambda \phi^4 \quad m \bar{\psi} \psi \quad m^2 h_{\mu\nu} h^{\mu\nu} \quad m^2 h^\mu_\mu h^\nu_\nu
 \]

- **Interactions with other fields** (such as matter, baryonic or dark)
 \[
 \Phi \bar{\psi} \psi \quad A^\mu A_\mu \Phi^\dagger \Phi \quad e^{-\beta \phi/M_p} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi \quad (h^\mu_\mu)^2 \phi^2 \quad \frac{1}{M_p} \pi T^\mu_\mu
 \]

Depending on the background, such terms might have functions in front of them that depend on time and/or space.

Many of the concerns of theorists can be expressed in this language.
When we write down a classical theory, described by one of our Lagrangians, we are usually implicitly assuming that the effects of higher order operators are small, and therefore mostly ignorable. This needs us to work below the strong coupling scale of the theory, so that quantum corrections, computed in perturbation theory, are small. We therefore need.

- The dimensionless quantities determining how higher order operators, with dimensionful couplings (irrelevant operators) affect the lower order physics be $\ll 1$ (or at least <1)

$$\frac{E}{\Lambda} \ll 1$$

(Energy \ll cutoff)

But be careful - this is tricky! Remember that our kinetic terms, couplings and potentials all can have background-dependent functions in front of them, and even if the original parameters are small, these may make them large - the strong coupling problem! You can no longer trust the theory!
Consistency II: Technical Naturalness

Even if your quantum mechanical corrections do not ruin your ability to trust your theory, any especially small couplings you need might be a problem.

• Suppose you need a very flat potential, or very small mass for some reason

\[\mathcal{L} = -\frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2 - \lambda \phi^4 \quad m \sim H_0^{-1} \]

Then unless your theory has a special extra symmetry as you take \(m \) to zero, then quantum corrections will drive it up to the cutoff of your theory.

\[m_{\text{eff}}^2 \sim m^2 + \Lambda^2 \]

• Without this, requires extreme fine tuning to keep the potential flat and mass scale ridiculously low - *challenge of technical naturalness*.
The Kinetic terms in the Lagrangian, around a given background, tell us, in a sense, whether the particles associated with the theory carry positive energy or not.

• Remember the Kinetic Terms: e.g.

\[-\frac{f(\chi)}{2} K(\partial_\mu \partial^\mu \phi) \rightarrow F(t, x) \frac{1}{2} \dot{\phi}^2 - G(t, x)(\nabla \phi)^2\]

This sets the sign of the KE

• If the KE is negative then the theory has ghosts! This can be catastrophic!

If we were to take these seriously, they’d have negative energy!!
• Ordinary particles could decay into heavier particles plus ghosts
• Vacuum could fragment

(Carroll, Hoffman & M.T.,(2003); Cline, Jeon & Moore. (2004))
A Ghostly Example

The most obvious place this happens is when there are uncontrolled higher derivatives in the theory. A simple example illustrates this easily.

\[\mathcal{L} = -\frac{1}{2} (\partial \psi)^2 + \frac{1}{2\Lambda^2} (\Box \psi)^2 - V(\psi) \]

- Introduce an auxiliary field via

\[\mathcal{L} = -\frac{1}{2} (\partial \psi)^2 + \chi \Box \psi - \frac{\Lambda^2}{2} \chi^2 - V(\psi) \text{ w/ EOM} \quad \chi = \frac{\Box \psi}{\Lambda^2} \]

(easy to check that substituting this back in yields original Lagrangian)

- Now make a field redefinition \(\psi = \phi - \chi \) and integrate by parts in action

\[\mathcal{L} = -\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 - \frac{\Lambda^2}{2} \chi^2 - V(\phi, \chi) \]

A ghost, with mass at the cutoff (so might be OK in full theory, but not always true)

This is why, within GR, almost all attempts to get a sensible model of \(w<-1 \) have failed.
Consistency IV - Superluminality ...

Crucial ingredient of Lorentz-invariant QFT: *microcausality*. Commutator of 2 local operators vanishes for spacelike separated points as operator statement

\[
[\mathcal{O}_1(x), \mathcal{O}_2(y)] = 0 ; \quad \text{when} \quad (x - y)^2 > 0
\]

Turns out, even if have superluminality, under right circumstances can still have a well-behaved theory, as far as causality is concerned. e.g.

\[
\mathcal{L} = -\frac{1}{2} (\partial \phi)^2 + \frac{1}{\Lambda^3} \partial^2 \phi (\partial \phi)^2 + \frac{1}{\Lambda^4} (\partial \phi)^4
\]

• Expand about a background: \(\phi = \bar{\phi} + \varphi \)

• Causal structure set by effective metric

\[
\mathcal{L} = -\frac{1}{2} G^{\mu\nu}(x, \bar{\phi}, \partial \bar{\phi}, \partial^2 \bar{\phi}, \ldots) \partial_\mu \varphi \partial_\nu \varphi + \cdots
\]

• If \(G \) globally hyperbolic, theory is perfectly causal, but *may* have directions in which perturbations propagate outside lightcone used to define theory. May or may not be a problem for the theory - remains to be seen.

But: there is still a worry here! …
... & (a little something for the aficionados) Analyticity

Theory may not have a Lorentz-Invariant UV completion! Sometimes can see from 2 to 2 scattering amplitude - related to superluminality: can think of propagation in G as sequence of scattering processes with background field

- Focus on 4-point amplitude $A(s, t)$ expressed as fn of Mandelstam variables.

- Won’t provide details here, but can use analyticity properties of this, with a little complex analysis gymnastics, plus the optical theorem to show

$$\left. \frac{\partial^2}{\partial s^2} A(s, 0) \right|_{s=0} = \frac{4}{\pi} \int_{s_*}^{\infty} ds \frac{\text{Im}A(s, 0)}{s^3} \geq 0$$

So, in forward limit, amplitude must have $+ve$ s^2 part. True for any L-I theory described by an S-matrix. Violation implies violation of L-I in the theory.

- There exist other consistency relations. In general can conclude

May have to have a non-Wilsonian, non-LI UV completion of the theory. Might be very hard!!
A Toy Example

Consider a simple and benign-looking model, that is clearly LI

\[\mathcal{L} = -\frac{1}{2} (\partial \phi)^2 + \frac{\alpha}{4 \Lambda^4} (\partial \phi)^4 \]

Can compute 2 to 2 scattering amplitude in field theory

\[A_{2\rightarrow 2}(s, t) = \frac{\alpha}{2 \Lambda^4} (s^2 + t^2 + u^2) = \frac{\alpha}{\Lambda^4} (s^2 + t^2 - st) \]

Take the forward limit \(t = 0 \):

\[A_{2\rightarrow 2}(s, 0) = \frac{\alpha}{\Lambda^4} s^2 \]

So are not free to choose \(\alpha < 0 \) in a Lorentz-invariant theory with an analytic S-matrix. Note also that, in this theory \(\alpha < 0 \) is naively interesting because it exhibits screening. It also exhibits superluminality for that choice: Circumstantial evidence for connection between superluminality and analyticity - but not a proof.
The Need for Screening in the EFT

Look at the general EFT of a scalar field conformally coupled to matter

\[\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, \partial\phi, \ldots) \partial_\mu \phi \partial_\nu \phi - V(\phi) + g(\phi) T^\mu_\mu \]

Specialize to a point source \(T^\mu_\mu \rightarrow -\mathcal{M} \delta^3(\vec{x}) \) and expand \(\phi = \bar{\phi} + \varphi \)

\[Z(\bar{\phi}) \left(\ddot{\varphi} - c_s^2(\bar{\phi}) \nabla^2 \varphi \right) + m^2(\bar{\phi}) \varphi = g(\bar{\phi}) \mathcal{M} \delta^3(\vec{x}) \]

Expect background value set by other quantities; e.g. density or Newtonian potential. Neglecting spatial variation over scales of interest, static potential is

\[V(r) = -\frac{g^2(\bar{\phi})}{Z(\bar{\phi}) c_s^2(\bar{\phi})} e^{-\frac{m(\bar{\phi})}{\sqrt{Z(\bar{\phi}) c_s(\bar{\phi})}} r} \mathcal{M} \]

So, for light scalar, parameters \(\mathcal{O}(1) \), have gravitational-strength long range force, ruled out by local tests of GR! If we want workable model need to make this sufficiently weak in local environment, while allowing for significant deviations from GR on cosmological scales!
Screening

So a general theme here, in both dark energy and modified gravity is the need for new degrees of freedom, coupled to matter with gravitational strength, and hence extremely dangerous in the light of local tests of gravity.

• Successful models exhibit “screening mechanisms”. Dynamics of the new degrees of freedom are rendered irrelevant at short distances and only become free at large distances (or in regions of low density).
• There exist several versions, depending on parts of the Lagrangian used
 • Vainshtein: Uses the kinetic terms to make coupling to matter weaker than gravity around massive sources.
 • Chameleon: Uses coupling to matter to give scalar large mass in regions of high density
 • Symmetron: Uses coupling to give scalar small VEV in regions of low density, lowering coupling to matter
• In each case should “resum” theory about the relevant background, and EFT of excitations around a nontrivial background is not the naive one.
• Around the new background, theory is safe from local tests of gravity.
General limitation of chameleon (\& symmetron) - and any mechanism with screening condition set by local Newtonian potential: range of scalar-mediated force on cosmological scales is bounded. So have negligible effect on linear scales today, and so deviation from LCDM is negligible.

See plenary talk by Justin Khoury on Friday for how these work

So here I’ll focus on the Vainshtein Mechanism
The Decoupling Limit (of, e.g. DGP)

\[S = \frac{M_5^3}{2r_c} \int d^5 x \sqrt{-G} \ R^{(5)} + \frac{M_4^2}{2} \int d^4 x \sqrt{-g} \ R \]

Much of interesting phenomenology of DGP captured in the **decoupling limit**:

\[M_4, M_5 \to \infty \]

\[\Lambda \equiv \frac{M_5^3}{M_4^2} \]

kept finite

Only a single scalar field - the brane bending mode - remains

Very special symmetry, inherited from combination of:

- 5d Poincare invariance, and brane reparametrization invariance

\[\pi(x) \to \pi(x) + c + b_\mu x^\mu \]

The Galilean symmetry!
Massive gravity

Very recent concrete suggestion - consider massive gravity

- Fierz and Pauli showed how to write down a linearized version of this, but...

\[\propto m^2 (h^2 - h_{\mu\nu}h^{\mu\nu}) \]

- ...thought all nonlinear completions exhibited the “Boulware-Deser ghost”.

Within last two years a counterexample has been found. This is a very new, and potentially exciting development!

[de Rham, Gabadadze, Tolley (2011)]

\[\mathcal{L} = M_P^2 \sqrt{-g} (R + 2m^2 \mathcal{U}(g, f)) + \mathcal{L}_m \]

Proven to be ghost free, and investigations of the resulting cosmology - acceleration, degravitation, ... are underway, both in the full theory and in its decoupling limit - galileons!

[Hassan & Rosen(2011)]
Focus on Galileons

In a limit yields novel and fascinating 4d EFT that many of us have been studying. Symmetry: \[\pi(x) \rightarrow \pi(x) + c + b_\mu x^\mu \]

Relevant field referred to as the Galileon

\[\mathcal{L}_1 = \pi \quad \mathcal{L}_2 = (\partial \pi)^2 \quad \mathcal{L}_3 = (\partial \pi)^2 \Box \pi \]

\[\mathcal{L}_{n+1} = n \eta^{\mu_1 \nu_1 \mu_2 \nu_2 \ldots \mu_n \nu_n} (\partial_{\mu_1} \pi \partial_{\nu_1} \pi \partial_{\mu_2} \partial_{\nu_2} \pi \cdots \partial_{\mu_n} \partial_{\nu_n} \pi) \]

There is a separation of scales

- Allows for classical field configurations with order one nonlinearities, but quantum effects under control.
- So can study non-linear classical solutions.
- Some of these very important (Vainshtein screening)

We now understand that there are many variations on this that share its attractive properties (probe brane construction; coset construction)
Nonrenormalization!

Amazingly terms of galilean form are nonrenormalized (c.f SUSY theories). Possibly useful for particle physics & cosmology. We’ll see.

Expand quantum effective action for the classical field about expectation value

The n-point contribution contains at least 2n powers of external momenta: cannot renormalize Galilean term with only 2n-2 derivatives. Can show, just by computing Feynman diagrams, that at all loops in perturbation theory, for any number of fields, terms of the galilean form cannot receive new contributions.

[Lucy, Porrati, Ratazzi (2003); Nicolis, Rattazzi (2004); Hinterbichler, M.T., Wesley, (2010)]

Can even add a mass term and remains technically natural
The Vainshtein Effect

Consider, for example, the “DGP cubic term”, coupled to matter

\[\mathcal{L} = -3(\partial\pi)^2 - \frac{1}{\Lambda^3} (\partial\pi)^2 \Box \pi + \frac{1}{M_{Pl}} \pi T \]

Now look at spherical solutions around a point mass

\[\pi(r) = \begin{cases} \sim \Lambda^3 R_V^{3/2} \sqrt{r} + \text{const.} & r \ll R_V \\ \sim \Lambda^3 R_V^3 \frac{1}{r} & r \gg R_V \end{cases} \quad R_V \equiv \frac{1}{\Lambda} \left(\frac{M}{M_{Pl}} \right)^{1/3} \]

Looking at a test particle, strength of this force, compared to gravity, is then

\[\frac{F_\pi}{F_{\text{Newton}}} = \frac{\pi'(r) / M_{Pl}}{M / (M_{Pl}^2 r^2)} = \begin{cases} \sim \left(\frac{r}{R_V} \right)^{3/2} & R \ll R_V \\ \sim 1 & R \gg R_V \end{cases} \]

So forces much smaller than gravitational strength within the Vainshtein radius - hence safe from 5th force tests.
Suppose we want to know the field that a source generates within the Vainshtein radius of some large body (like the sun, or earth).

Perturbing the field and the source

\[\pi = \pi_0 + \varphi, \quad T = T_0 + \delta T, \]

yields

\[
\mathcal{L} = -3(\partial \varphi)^2 + \frac{2}{\Lambda^3} \left(\partial_\mu \partial_\nu \pi_0 - \eta_{\mu\nu} \Box \pi_0 \right) \partial^\mu \varphi \partial^\nu \varphi - \frac{1}{\Lambda^3} (\partial \varphi)^2 \Box \varphi + \frac{1}{M_4} \varphi \delta T
\]

Thus, if we canonically normalize the kinetic term of the perturbations, we raise the effective strong coupling scale, and, more importantly, heavily suppress the coupling to matter!
Regimes of Validity

The usual quantum regime of a theory

\[r \ll \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \gg 1 \]

The usual linear, classical regime of a theory

\[\frac{1}{\Lambda} \ll r \ll R_V \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3/2} \gg 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

A new classical regime, with order one nonlinearities

\[r \sim \frac{1}{\Lambda} \]
\[\alpha_{cl} \sim \left(\frac{R_V}{r} \right)^{3} \ll 1 \]
\[\alpha_q \sim \frac{1}{(r\Lambda)^2} \ll 1 \]

\[r \sim R_V \]
The Vainshtein Effect is Very Effective!

Fix r_c to make solutions cosmologically interesting - $4000 \text{ Mpc} = 10^{10} \text{ ly}$

$$r^* = \left(\frac{2GM}{c^2 r_c^2} \right)^{1/3}$$

$\sim 0.1 \text{ kpc} = 10^7 \text{ AU}$

$\sim \text{Mpc} \sim 30 \text{ galactic radii}$

$\sim 10 \text{ Mpc} \sim 10 \text{ virial radii}$
Can look for signals in, e.g., cosmology

- Weak gravitational lensing
- CMB lensing and the ISW effect
- Redshift space galaxy power spectra
- Combining lensing and dynamical cross-correlations
- The halos of galaxies and galaxy clusters

- Very broadly: Gravity is behind the expansion history of the universe
- But it is also behind how matter clumps up - potentially different.
- This could help distinguish a CC from dark energy from other possibilities

(As we’ve seen in real details in a range of talks here)
These Theories are Difficult

• What we're doing is laying out criteria that must be satisfied, by these theories, and others. But so far, it is important to note that, no entirely satisfactory understanding of acceleration exists in the controlled regime. Much more work is needed.

• Vainshtein screening is a very powerful effect - it is better than needed to recover local tests of gravity.

• Its behavior around different sources, and poorly-understood dynamics for t-dependent ones, mean there is much work to do.

• One might consider the uncertainties about sensible UV behavior to be very worrying, but there is serious work to be done to understand whether this is a feature or a bug.

• These ideas may ultimately fail, or require a different understanding of UV behavior to conventional field theories. A theoretical challenge.

See also plenary talk by Justin Khoury, and parallel talks by Alexandra Terrana, Raquel Ribeiro, Clare Burrage, Gianmassimo Tasinato, Andrew Matas, David Stefanyszyn, Adrienne Erickcek, Eva-Maria Katar Müller, Ignacy Sawicki, Johannes Noller & George Zahariade.
Summary

• Cosmic acceleration: one of our deepest problems - echo Catherine (be general, don’t test models yet) and Wendy (be vigilant)
• Questions thrown up by the data need to find a home in fundamental physics, and many theorists are hard at work on this. Requires particle physicists and cosmologists to work together.
• We still seem far from a solution in my opinion, but some very interesting ideas have been put forward in last few years.
• Many attractive ideas (as well as a lot of ugly ones) being ruled out or tightly constrained by these measurements. And fascinating new theoretical ideas are emerging even without acceleration
• Serious models only need apply - theoretical consistency is a crucial question. We need (i) models in which the right questions can be asked and (ii) A thorough investigation of the answers.
• I’ve mostly covered the general approach to the technical questions, and illustrated with particular Vainshtein screening examples; massive gravity and Galileons.

Thank You!