Massive multi-tracer surveys of LSS:
The sky is not the limit

L. Raul Abramo
Physics Institute & LabCosmos
University Of Sao Paulo

Galaxy surveys are evolving

We used to live in an era of shot ("counts") noise

[Finding galaxies was the limiting factor]
Galaxy surveys are evolving

We used to live in an era of shot ("counts") noise

We are now entering the age of cosmic variance

[Finding galaxies was the limiting factor]

[Gaining volume is the limiting factor]
Cosmological surveys are now severely limited by **cosmic variance** (and systematics)

These **error bars** have a large contribution from **cosmic variance**: in order to improve, we must increase the **volume** of our surveys

However, up to any given redshift there is only a finite volume to survey. Moreover, we are reaching closer to the limits of the observable Universe!
Shot noise:
finite number of **counts** of the tracers of the underlying density field

Cosmic variance:
finite **volume** inside which we can estimate the **amplitudes and phases** of the (Gaussian) random **modes** of the density field
Shot noise:
finite number of **counts** of the tracers of the underlying density field

Cosmic variance:
finite **volume** inside which we can estimate the **amplitudes and phases** of the (Gaussian) random **modes** of the density field

$$\left\langle \frac{\delta n_g(\bar{x})}{\bar{n}_g} \frac{\delta n_g(\bar{y})}{\bar{n}_g} \right\rangle_V \simeq b_g^2 \left\langle \delta_m(\bar{x}) \delta_m(\bar{y}) \right\rangle_V + \frac{1}{\bar{n}_g} \delta_D(\bar{x} - \bar{y})$$
Shot noise:
finite number of \textbf{counts} of the tracers of the underlying density field

Cosmic variance:
finite \textbf{volume} inside which we can estimate the \textbf{amplitudes and phases} of the (Gaussian) random \textbf{modes} of the density field

\[
\left\langle \frac{\delta n_g(\vec{x})}{\bar{n}_g} \frac{\delta n_g(\vec{y})}{\bar{n}_g} \right\rangle_V \simeq b_g^2 \left\langle \delta_m(\vec{x})\delta_m(\vec{y}) \right\rangle_V + \frac{1}{\bar{n}_g} \delta_D(\vec{x} - \vec{y})
\]

\[
P_g(\vec{k}) \simeq b_g^2 P_m(\vec{k}) + \frac{1}{\bar{n}_g}
\]
Shot noise:
finite number of counts of the tracers of the underlying density field

Cosmic variance:
finite volume inside which we can estimate the amplitudes and phases of the (Gaussian) random modes of the density field

\[
\left\langle \frac{\delta n_g(\vec{x})}{\bar{n}_g} \frac{\delta n_g(\vec{y})}{\bar{n}_g} \right\rangle_V \simeq b_g^2 \left\langle \delta_m(\vec{x}) \delta_m(\vec{y}) \right\rangle_V + \frac{1}{\bar{n}_g} \delta_D(\vec{x} - \vec{y})
\]

\[
P_g(\vec{k}) \simeq b_g^2 P_m(\vec{k}) + \frac{1}{\bar{n}_g}
\]

Clustering in units of shot noise

\[
\bar{n}_g P_g(\vec{k}) \simeq \bar{n}_g b_g^2 P_m(\vec{k}) + 1
\]
Fisher information of galaxy surveys (single type of galaxy)

Tegmark et al. (1997)

Clustering strength of galaxy type “g” in redshift space

\[\mathcal{P}_g(\vec{x}, \vec{k}) \equiv \bar{n}_g(\vec{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k) \]
Fisher information of galaxy surveys (single type of galaxy)

\[\mathcal{P}_g(\tilde{x}, \tilde{k}) = \bar{n}_g(\tilde{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k) \]

more galaxies

Information \(\sim \) \(\left(\frac{\mathcal{P}_g}{1 + \mathcal{P}_g} \right)^2 \)

Tegmark et al. (1997)

Clustering strength of galaxy type “g” in redshift space
Fisher information of galaxy surveys (single type of galaxy)

Tegmark et al. (1997)

Clustering strength of galaxy type "g" in redshift space

\[\mathcal{P}_g(\vec{x}, \vec{k}) \equiv \bar{n}_g(\vec{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k) \]
Fisher information of galaxy surveys (single type of galaxy)

\[\mathcal{P}_g(\vec{x}, \vec{k}) \equiv \bar{n}_g(\vec{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k) \]

Clustering strength of galaxy type “g” in redshift space

Tegmark et al. (1997)
Fisher information of galaxy surveys (single type of galaxy)

Tegmark et al. (1997)

Clustering strength of galaxy type “g” in redshift space

\[
\mathcal{P}_g(x, k) \equiv \bar{n}_g(x) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k)
\]
Fisher information of galaxy surveys (single type of galaxy)

\[P_g(\bar{x}, \bar{k}) \equiv \bar{n}_g(\bar{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k) \]
Fisher information of galaxy surveys (single type of galaxy)

Tegmark et al. (1997)

\[
\mathcal{P}_g(\vec{x}, \vec{k}) \equiv \bar{n}_g(\vec{x}) \left[b_g(z, k) + f(z) \mu_k^2 \right]^2 G^2(z) P_m(k)
\]

Clustering strength of galaxy type "g" in redshift space

Are we about to hit a cosmic variance "wall"?
Fisher information in phase space

On each cell of phase space volume there is a certain amount of information about the spectrum (and other quantities), given by:

\[
F[\log P_g] \times \frac{\Delta V_x \Delta V_k}{(2\pi)^3} = \frac{1}{2} \left(\frac{P_g}{1 + P_g} \right)^2 \times \frac{\Delta V_x \Delta V_k}{(2\pi)^3}
\]

phase space volume = \Delta \mathcal{V}.
Fisher information in phase space

On each cell of phase space volume there is a certain amount of information about the spectrum (and other quantities), given by:

\[
F[\log \mathcal{P}_g] \times \frac{\Delta V_x \Delta V_k}{(2\pi)^3} = \frac{1}{2} \left(\frac{\mathcal{P}_g}{1 + \mathcal{P}_g} \right)^2 \times \frac{\Delta V_x \Delta V_k}{(2\pi)^3}
\]

The precision (SNR) with which we can estimate the clustering strength is:

\[
\frac{\mathcal{P}_g^2}{\sigma^2(\mathcal{P}_g)} = F[\log \mathcal{P}_g] \times \Delta \mathcal{V} = \frac{1}{2} \left(\frac{\mathcal{P}_g}{1 + \mathcal{P}_g} \right)^2 \Delta \mathcal{V}
\]
Multi-tracer Fisher information matrix

\[F[\log \mathcal{P}_\alpha, \log \mathcal{P}_\beta] = \frac{1}{4} \left[\frac{\mathcal{P}_\alpha \mathcal{P}_\beta (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \delta_{\alpha \beta} \frac{\mathcal{P}_\alpha \mathcal{P}}{1 + \mathcal{P}} \right] \]

Clustering strengths of each galaxy type: \(\mathcal{P}_\alpha \)

Total clustering strength of a survey: \(\mathcal{P} \equiv \sum_\alpha \mathcal{P}_\alpha \)
Multi-tracer Fisher information matrix

\[F[\log \mathcal{P}_\alpha, \log \mathcal{P}_\beta] = \frac{1}{4} \left[\frac{\mathcal{P}_\alpha \mathcal{P}_\beta (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \delta_{\alpha\beta} \frac{\mathcal{P}_\alpha \mathcal{P}_\beta}{1 + \mathcal{P}} \right] \]

Clustering strengths of each galaxy type: \(\mathcal{P}_\alpha \)

Total clustering strength of a survey: \(\mathcal{P} \equiv \sum_\alpha \mathcal{P}_\alpha \)

\[F = \frac{1}{2} \left(\frac{\mathcal{P}}{1 + \mathcal{P}} \right)^2 \]

1 tracer
Multi-tracer Fisher information matrix

\[F[\log \mathcal{P}_\alpha, \log \mathcal{P}_\beta] = \frac{1}{4} \left[\frac{\mathcal{P}_\alpha \mathcal{P}_\beta (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \delta_{\alpha\beta} \frac{\mathcal{P}_\alpha \mathcal{P}}{1 + \mathcal{P}} \right] \]

Clustering strengths of \textbf{each galaxy type:} \(\mathcal{P}_\alpha \)

\textbf{Total clustering strength of a survey:} \(\mathcal{P} \equiv \sum_{\alpha} \mathcal{P}_\alpha \)

\[F = \frac{1}{2} \left(\frac{\mathcal{P}}{1 + \mathcal{P}} \right)^2 \Rightarrow \frac{1}{4} \left(\frac{\mathcal{P}_1^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} \right) \]

\textbf{1 tracer} \hspace{3cm} \textbf{2 tracers}
Multi-tracer Fisher information matrix

\[
F[\log \mathcal{P}_\alpha, \log \mathcal{P}_\beta] = \frac{1}{4} \left[\mathcal{P}_\alpha \mathcal{P}_\beta (1 - \mathcal{P}) \frac{1}{(1 + \mathcal{P})^2} + \delta_{\alpha\beta} \frac{\mathcal{P}_\alpha \mathcal{P}}{1 + \mathcal{P}} \right]
\]

Clustering strengths of each galaxy type:

\[\mathcal{P}_\alpha \]

Total clustering strength of a survey:

\[\mathcal{P} \equiv \sum_{\alpha} \mathcal{P}_\alpha \]

\[
F = \frac{1}{2} \left(\frac{\mathcal{P}}{1 + \mathcal{P}} \right)^2 \Rightarrow \frac{1}{4} \left(\frac{\mathcal{P}_1^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{1 + \mathcal{P}} \frac{1}{(1 + \mathcal{P})^2} + \frac{\mathcal{P}_2^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} \right) \Rightarrow \frac{1}{4} \left(\begin{array}{ccc}
\frac{\mathcal{P}_1^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} & \frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{1 + \mathcal{P}} & \frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{1 + \mathcal{P}} \\
\frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{1 + \mathcal{P}} & \frac{\mathcal{P}_2^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} & \frac{\mathcal{P}_2 \mathcal{P}_3 (1 - \mathcal{P})}{1 + \mathcal{P}} \\
\frac{\mathcal{P}_1 \mathcal{P}_2 (1 - \mathcal{P})}{1 + \mathcal{P}} & \frac{\mathcal{P}_2 \mathcal{P}_3 (1 - \mathcal{P})}{1 + \mathcal{P}} & \frac{\mathcal{P}_3^2 (1 - \mathcal{P})}{(1 + \mathcal{P})^2} + \frac{\mathcal{P}_3 \mathcal{P}}{1 + \mathcal{P}} \\
\end{array} \right)
\]

1 tracer

2 tracers

3 tracers

So... are we in fact gaining any information by splitting galaxies into sub-types, or are we just "shuffling it around"?
Multi-tracer Fisher information matrix

Yes, we **gain** information.
In fact, with **multiple tracers** the Fisher matrix is **unbounded**!
Yes, we **gain** information.
In fact, with **multiple tracers** the Fisher matrix is **unbounded**!

We can **diagonalize** the multi-tracer Fisher matrix by changing variables:

⇒ **Hyper-spherical coordinates**!

\[
\begin{align*}
\mathcal{P}_1 &= x^2 \\
\mathcal{P}_2 &= y^2 \\
\mathcal{P}_3 &= z^2 \\
\end{align*}
\] \quad \leftrightarrow \quad
\begin{align*}
\frac{r^2}{\mathcal{P}} &= \frac{\mathcal{P}_3}{\mathcal{P}_1 + \mathcal{P}_2} \\
\tan^2 \theta &= \frac{\mathcal{P}_2}{\mathcal{P}_1} \\
\tan^2 \phi &= \\
\end{align*}
\]
Multi-tracer Fisher information matrix

Yes, we **gain** information.
In fact, with **multiple tracers** the Fisher matrix is **unbounded**!

We can **diagonalize** the multi-tracer Fisher matrix by changing variables:

⇒ **Hyper-spherical coordinates**!

\[
\begin{align*}
\mathcal{P}_1 &= \begin{cases} x^2 \\ y^2 \\ z^2 \end{cases} \\
\mathcal{P}_2 &= \begin{cases} x^2 \\ y^2 \\ z^2 \end{cases} \\
\mathcal{P}_3 &= \begin{cases} x^2 \\ y^2 \\ z^2 \end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\mathcal{P}_1 \\
\mathcal{P}_2 \\
\mathcal{P}_3
\end{bmatrix}
&=
\begin{bmatrix}
x^2 \\
y^2 \\
z^2
\end{bmatrix}
\quad \Longleftrightarrow \quad
\begin{bmatrix}
r^2 \\
\tan^2 \theta \\
\tan^2 \phi
\end{bmatrix}
=
\begin{bmatrix}
\mathcal{P} \\
\mathcal{P}_3 / (\mathcal{P}_1 + \mathcal{P}_2) \\
\mathcal{P}_2 / \mathcal{P}_1
\end{bmatrix}
\end{align*}
\]
Multi-tracer Fisher information matrix

In “spherical” coordinates (i.e., using the total clustering strength and the relative clustering strengths) the Fisher matrix becomes diagonal!

E.g.: three species of tracers

\[
F_{Sp} = \left\{ \begin{array}{ccc}
\frac{1}{2} \left(\frac{\mathcal{P}}{1+\mathcal{P}} \right)^2 & 0 & 0 \\
0 & \frac{1}{4} \frac{\mathcal{P}^2}{1+\mathcal{P}} \sin^2 \theta \cos^2 \theta & 0 \\
0 & 0 & \frac{1}{4} \frac{\mathcal{P}^2}{1+\mathcal{P}} \sin^2 \theta \sin^2 \phi \cos^2 \phi \\
\end{array} \right\}
\]
Multi-tracer Fisher information matrix

In “spherical” coordinates (i.e., using the total clustering strength and the relative clustering strengths) the **Fisher matrix becomes diagonal**!

E.g.: three species of tracers

\[
F_{Sph} = \begin{pmatrix}
\frac{1}{2} \left(\frac{P}{1+P} \right)^2 & 0 & 0 \\
0 & \frac{1}{4} \frac{P^2}{1+P} \sin^2 \theta \cos^2 \theta & 0 \\
0 & 0 & \frac{1}{4} \frac{P^2}{1+P} \sin^2 \theta \sin^2 \phi \cos^2 \phi
\end{pmatrix}
\]

Total clustering:
\[
< 1/2
\]
Multi-tracer Fisher information matrix

In “spherical” coordinates (i.e., using the total clustering strength and the relative clustering strengths) the Fisher matrix becomes diagonal!

E.g.: three species of tracers

\[
F_{Sph} = \begin{bmatrix}
\frac{1}{2} \left(\frac{\mathcal{P}}{1+\mathcal{P}} \right)^2 & 0 & 0 \\
0 & \frac{\mathcal{P}^2}{4(1+\mathcal{P})} & \frac{\mathcal{P}^2}{4(1+\mathcal{P})} \\
0 & \frac{\mathcal{P}^2}{4(1+\mathcal{P})} & \frac{\mathcal{P}^2}{4(1+\mathcal{P})}
\end{bmatrix}
\]

Total clustering: \(< 1/2 \)

Relative clusterings: information \(\sim \mathcal{P} = \sum_{\alpha} \bar{n}_\alpha b^2_\alpha P_m \)
- unbounded
- extra information!
Very simple example: two types of tracers of large-scale structure

\[\mathcal{F}_1 = \frac{1}{2} \left(\frac{\mathcal{P}_1 + \mathcal{P}_2}{1 + \mathcal{P}_1 + \mathcal{P}_2} \right)^2 \]

\[\mathcal{F}_2 = \frac{1}{4} \frac{\mathcal{P}_1 \mathcal{P}_2}{1 + \mathcal{P}_1 + \mathcal{P}_2} \]

\[\mathcal{F}_1, \mathcal{F}_2 \]

\[\mathcal{P}_1, \mathcal{P}_2 \]
Very simple argument: cosmic variance is only inherited through the spectrum

By comparing the clustering between different tracers of large-scale structure (e.g.: LRGs, ELGs, etc.), we can measure with arbitrary accuracy* the physical parameters that determine the different clustering strengths:

\[
P_1 = n_1 (b_1 + f \mu_k^2)^2 P(k; z)
\]

\[
P_2 = n_2 (b_2 + f \mu_k^2)^2 P(k; z)
\]
Very simple argument: cosmic variance is only inherited through the spectrum

By comparing the clustering between different tracers of large-scale structure (e.g.: LRGs, ELGs, etc.), we can measure with arbitrary accuracy* the physical parameters that determine the different clustering strengths:

\[
P_1 = n_1 \left(b_1 + f \mu_k^2 \right)^2 P(k; z)
\]

\[
P_2 = n_2 \left(b_2 + f \mu_k^2 \right)^2 P(k; z)
\]
Very simple argument: cosmic variance is only inherited through the spectrum

By comparing the clustering between different tracers of large-scale structure (e.g.: LRGs, ELGs, etc.), we can measure with arbitrary accuracy* the physical parameters that determine the different clustering strengths:

\[
\mathcal{P}_1 = n_1 (b_1 + f \mu_k^2) P(k; z)
\]
\[
\mathcal{P}_2 = n_2 (b_2 + f \mu_k^2) P(k; z)
\]

\[
\frac{\mathcal{P}_1}{\mathcal{P}_2} = \frac{n_1 (b_1 + f \mu_k^2)}{n_2 (b_2 + f \mu_k^2)}
\]

Cosmic variance does not apply:
- * bias
- * RSDs
- * PNG

The key: very high numbers of distinct types of tracers (red galaxies, blue galaxies, emission-line galaxies, quasars, etc.)
Galaxies are more than just a nice redshift!

Just give me the goddamn z already!
J-PAS

Javalambre Physics of the Accelerated Universe Astrophysical Survey

- New site - OAJ, mainland Spain
- Two new telescopes (2.5m & .8m) dedicated to surveys
- An innovative strategy: imaging in 54 narrow-band filters
- Benitez et al., 1403.5237 – http://j-pas.org

Images & low-resolution ($R\sim60$) spectra of everything ($i<\sim22.5$)

> 8500 deg^2!

- Dark energy
- Galaxy evolution
- LSS & BAOs
- Supernovas
- Clusters
- QSOs
Joint Spain + Brazil project; total cost ~ € 45 million

Two telescopes:
2.5 m and 0.8 m

1.2 Gpixel camera,
FoV 3°

Science data
beginning in 2015
(running 'til 2020/21)
Main telescope - T250 (2.5m)

M1 = 2.5m
FoV = 3 deg = 476 mm at FP
Effective coll. area = 3.89 m²
Etendue = 27.5 m² deg²

Plate scale = 22.67″/mm = 0.22″/pix
Focal length = 9098 mm (F#3.5)
Type = Ritchey Chrétien-like
Mount = Alt-azimuthal
Focus = Cassegrain
Field corrector = 3 lenses
Mass = 45.000 Kg

On lab (AMOS)
c. 2012

On site
March 2014
Camera - JPCam

* Array of 14 large-format CCDs from E2V
* 9.216 x 9.216 pixels (1.2 Gpix camera!)
* QE > 80% (400–900 nm)
Camera JPCam - completed by Q4/2014-Q1/2015
Some pics

- OAJ
- M106
- OAJ
- M27
Datacube: 54 narrow-band + 7 broad-band filters

z-photo: $\sigma_z \sim 0.002-0.003 \ (1+z)$
neart-spectroscopic accuracy & precision

J-PAS:
an R~60 IFU
over 8500 deg2, down to $i\sim23$!
J-PAS: an 8500 deg2 IFU

- $\sim 1.3 \times 10^7$ LRGs up to $z<1.1$ - $\sigma_z \sim 0.003(1+z)$
- $\sim 10^8$ ELGs up to $z<1.3$ - $\sigma_2 \sim 0.0025(1+z)$
- $> 2 \times 10^8$ galaxies (generic) to $z<1.3$ - $\sigma_z \sim 0.01(1+z)$
- $\sim 2 \times 10^6$ QSOs up to $z<4$ - $\sigma_z \sim 0.0015(1+z)$
- $> 10^5$ clusters & groups
- $\sim 10^4$ supernovas (no need of spectroscopic follow-up!)
- Serendipitous discoveries & more
- 54 narrow-band images of everything down to $r\sim22.5$

Footprint:

- \simSDSS
Massive & deep multi-tracer survey with J-PAS

@ k=0.1 h/Mpc

See also:
* GAMA - Blake et al., MNRAS 2013 : $P_\alpha > 10$ for $z<0.25$
* Radio galaxies & SKA - Ferramacho et al., MNRAS 2014
* 21cm intensity mapping - Bull et al., arXiv:1405.1452
1. Conditional errors
PNG (f_{NL} local) and matter growth rate ($f\sigma_8$) benefit from multi-tracer analysis

![Graphs showing conditional errors for f_{NL} and $f\sigma_8$](image-url)
1. Conditional errors
PNG (f_{NL} local) and matter growth rate ($f\sigma_8$) benefit from multi-tracer analysis

The BAO distance scales, not so much…
For **high number densities** (~low redshifts), the contribution from the **relative clustering strengths** dominates the (Fisher) information of **bias-related quantities**

\[
matter \text{ growth rate } f \sigma_8
\]

\[
f_{NL}
\]

\[
\text{Relat.} = \text{Fisher information from relative clustering strengths}
\]

\[
\text{Total} = \text{Total fisher information (absolute + relative)}
\]
2. Marginalized errors
Prior knowledge of the bias of the tracers (from, e.g., lensing) suppresses the degradation due to marginalization \(\text{wrt}\) bias

No prior on bias
2. Marginalized errors
Prior knowledge of the bias of the tracers (from, e.g., lensing) suppresses the degradation due to marginalization \textit{wrt} bias.

No prior on bias

Weak (~20\%) prior on bias
2. Marginalized errors
Prior knowledge of the bias of the tracers (from, e.g., lensing) suppresses the degradation due to marginalization \textit{wrt} bias.

No prior on bias
Weak (~20%) prior on bias
Strong (~5%) prior on bias
f_{NL} is almost unaffected: the k-dependence of $\Delta b_{\text{NL}} \sim f_{\text{NL}} \times k^{-2}$ helps break the degeneracy with bias.

Cumulative uncertainty on f_{NL} when the redshift slices are combined.

No prior on bias.

1σ error: ~2
f_{NL} is almost unaffected: the k-dependence of $\Delta b_{NL} \sim f_{NL} \times k^{-2}$ helps break the degeneracy with bias

Cumulative uncertainty on f_{NL} when the redshift slices are combined

No

Weak (~20%) prior on bias

1σ error: ~2
f_{NL} is almost unaffected: the k-dependence of $\Delta b_{NL} \sim f_{NL} \times k^{-2}$ helps break the degeneracy with bias.

Cumulative uncertainty on f_{NL} when the redshift slices are combined

Cumulative uncertainty on f_{NL} when the redshift slices are combined

- LRGs
- ELGs
- quasars
- Combined

No
Weak (~20%)
Strong (~5%) prior on bias

1σ error: ~2
Conclusions

• In the new *age of cosmic variance*, multi-tracer surveys (e.g., J-PAS) will be far superior to single-tracer surveys of large-scale structure.

• These tracers of LSS can be different types of galaxies, galaxies of different luminosities, QSOs, or even the DM halos themselves.

• Boost from multi-tracer analysis kicks in for very large number densities of the tracers (total $\geq 10^{-2} h^3 \text{Mpc}^{-3}$).

• New horizons for constraining modified gravity & inflation.

• Actual data is right around the corner (next ~5-7 years).

• Difficulties: covariance of the biases; non-linearities and modelling or RSDs; assembly bias; cross-covariances…

• What multi-tracer analysis can tell us about the bispectrum?