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• the inflaton model & asymmetry!

• dynamics:!
• homogeneous!

• linearized dynamics - instabilities!

• nonlinear dynamics - fragmentations & solitons!

• asymmetry generation!

• dependence on params.!

• inflaton asymmetry — baryon asymmetry!

• observational consequences
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the model details
A variation of the Affleck-Dine Mechanism (1985) 

Hertzberg & Karouby (2013)

units where c = ~ = 1 and use the reduced Planck
mass throughout mPl = 1/

p
8⇡G. We will assume

an approximately FRW universe with a metric of the
form1

ds2 = � [1 + 2 (t,x)] dt2 + a2(t) [1 � 2 (t,x)] dx2,
(2)

where a(t) is the scalefactor. We include the metric
perturbations for the calculation of initial conditions
for our lattice simulations. However, for subsequent
nonlinear evolution after the end of inflation (on sub-
horizon scales), we assume an FRW metric.

II. INFLATON MODEL AND ASYMMETRY

In this section we model the inflaton, the breaking
of global U(1) symmetry and define some relevant
measures of the inflaton/anti-inflaton asymmetry.

A. The inflaton model

We model the inflaton as a complex scalar field �,
whose action is given by

S =

Z
d4x

p�g


m2

Pl

2
R � gµ⌫@µ�@⌫�⇤ � V (�, �⇤)

�
,

(3)
where gµ⌫ is the metric, g is the determinant of gµ⌫

and R is the Ricci scalar. The equation of motion of
the inflaton � is

gµ⌫rµr⌫� � @�⇤V (�, �⇤) = 0. (4)

The conjugate of Eq. (4) yields the equation of mo-
tion for �⇤.

The potential V (�, �⇤) consists of two parts:

V (�, �⇤) = V
s

(|�|) + V
br

(�, �⇤), (5)

where V
s

(|�|) respects the global U(1) symmetry:
� ! ei✓�. This part of the potential controls the dy-
namics of the field during and after inflation (though
there are some corrections from V

br

). V
br

(�, �⇤) on
the other hand, breaks the global U(1) symmetry,
and is chosen to be subdominant, at least energeti-
cally, at all times. For concreteness, we assume the

1 We set the two metric potentials equal to each other. This
is valid for a linear calculation in both the metric and the
field fluctuations for canonical scalar fields.

following form for V
s

(|�|):

V
s

(|�|) = m2M2

"r
1 + 2

|�|2
M2

� 1

#
,

=

8
><

>:

m2|�|2 � m2

2M2 |�|4 + . . . |�| ⌧ M

p
2m2M |�| � m2M2 + . . . |�| � M.

(6)
During inflation � & mPl � M � m. The form of
the potential is motivated by the monodromy infla-
tion scenarios [21–24]. Such “flattened” potentials
are not only well motivated theoretically, but are
consistent with observations [40].

For the symmetry breaking term, V
br

(�, �⇤), we
can choose

V
br

(�, �⇤) =
c
3

3

m2

M

⇣
�3 + �⇤3

⌘
. (7)

This is the lowest dimension symmetry breaking
term considered in [14] (note that in terms of nota-
tion, our c

3

is di↵erent from the one defined there).
The cubic power ensures that the symmetry break-
ing term is subdominant at late times after the end
of inflation when the inflaton potential is V

s

(|�|) ⇡
m2|�|2. The coe�cient m2/M is chosen to make c

3

dimensionless. For the large field values (i.e. during
inflation), this symmetry breaking term might dom-
inate unless c

3

is small enough. To avoid this, we
must have

c
3

⌧ 1

N

✓
M

mPl

◆
2

, (8)

where N is the number of e-folds of inflation. For
N = 55 and M = 10�2mPl we get c

3

⌧ 10�6.
However, if we do not want c

3

to be very small,
V

br

can be modified as

V
br

(�, �⇤) =
c
3

3

m2

M

�
�3 + �⇤3

�

f(|�|) ,

f(|�|) =

✓
1 + 2

|�|2
M2

◆
2

.

(9)

Since f(|�|) � 1 during inflation, it naturally sup-
presses the symmetry breaking term during infla-
tion.2 We prefer to work with this form of the sym-
metry breaking term since we wish to explore the c

3

2 One could imagine such a factor arising due to a conformal
transformation from the Jordan to Einstein frame.
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inflaton asymmetry — baryon asymmetry
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Linearized Perturbations: Initial Conditions
mined from the linearlized Einstein equations:

 ̇
k

+ H 
k

=
1

2m2

Pl

�IJ '̇I�'J
k

,

✓
Ḣ +

k2

a2

◆
 

k

=
1

2m2

Pl

�IJ

h
�'̇I�'̇J

k

+ �'J
k

'̈I
i
.

(24)
One can substitute the gravitational potential  

k

and its derivative  ̇
k

into the field equations for �'J
k

to get a (coupled) linear system for �'J . Formally,
we can write this linear system as

Lk(t) · �~'
k

(t) = 0, (25)

where

�~'
k

(t) =
⇥
�'1

k

(t), . . . , �'N
k

(t)
⇤T

. (26)

In the above equation Lk(t) is a linear, second-order-
in-time di↵erential operator that depends on k and
t. It is a N ⇥ N matrix. For our case the operator
Lk has the form

Lk · �'
k

(t) = � ~̈'
k

(t) + 3H� ~̇'
k

(t)

+
k2

a2

�~'
q

+M(t) · �~'
k

+
1

m2

Pl

h
X(t, k) · �~'

k

+Y(t, k) · � ~̇'
k

i
= 0.

(27)
The above system included scalar gravitational per-
turbations (terms / m�2

Pl ). The matrices X(t, k)
and Y(t, k) have the property X(t, k),Y(t, k) ! 0
as k/aH ! 1.

The solution to this linear system can be written
formally as

�~'
k

(t) =
NX

n=1

a
kn~un(t, k) + a⇤

�kn~u⇤
n(t, k), (28)

where for each n,

~un(t, k) =
⇥
u1

n(t, k), . . . , uN
n (t, k)

⇤T
,

Lk(t) · ~un(t, k) = 0.

(29)

Note that the solution has 2N constants of integra-
tion and 2N “vector” solutions. The appearance of
a⇤

�nk is due to our assumption that �'J
k

are Fourier
transforms of real fields. In component form

�'J
k

(t) =
NX

n=1

a
knuJ

n(t, k) + a⇤
�knuJ⇤

n (t, k). (30)
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FIG. 2. Di↵erent components of the power spectra of
the fields at the end of inflation (with ✓i = 0.7 ⇥ ⇡/3).
Inside the horizon, the diagonal components match the
Minkowski space power spectrum, whereas the cross
spectra are small. Outside the horizon, the perturba-
tion spectra (diagonal spectra (orange) and cross spec-
tra(green)) are much larger that the Minkowski space ap-
proximations (dashed line). Starting from Bunch-Davies
initial conditions deep inside the horizon during inflation,
we evolved the perturbations including metric pertur-
bations self consistently. Ignoring metric perturbations
underestimates the spectra on superhorizon scales.

1. Quantization and power spectra

We now follow the usual canonical quantization
procedure and elevate ank and a⇤

nk to operators.

a
kn ! â

kn,

a⇤
kn ! â†

kn,
(31)

that satisfy the following commutation relations

[â
qn, â

km] = 0,
h
â
qn, â†

km

i
= �(q � k)�nm.

(32)

Notationally, this means putting “hats” on �'J
k

and
{ank, a⇤

�nk} in the mode expansion in Eq. (30). This
expansion in terms of creation and annihilation op-
erators is consistent with the one provided in the
last chapter of [26].4 Following [26], we chose the

4 We thank M. Hertzberg, D. Kaiser and J. Karouby for dis-
cussions regarding the need to solve for all the independent
solutions for the quantum problem. A discussion of multi-
field initial conditions will also be presented in an upcoming
review article [27].
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FIG. 1. A qualitative picture of the homogenous evo-
lution of the complex inflaton field. During inflation,
the symmetry breaking term is suppressed. As a result
✓i = ✓

inf

= constant.

where J = 1, 2. Note that the covariant deriva-
tives include the homogeneous and the inhomoge-
neous parts of the metric. The potential in terms of
the two fields is as follows:

V = V
s

+ V
br

,

V
s

= m2M2

"r
1 +

�IJ'I'J

M2

� 1

#
,

V
br

=
c
3

3
p

2

m2

M

('1)3 � 3'1('2)2

f('1, '2)
.

(20)

As usual, repeated indices are summed over.
We can solve Eq. (19) along with appropriate

Einstein equations on a lattice, without further ap-
proximations. However, it would be a waste of com-
putational resources to use the lattice simulations
when the perturbations are small. For evolution
during inflation and up to the end of inflation (or
until the fluctuations in the field remain small com-
pared to the background), we will solve the above
system after linearizing in the field fluctuations. We
include the metric fluctuations here since they are
important for perturbations on horizon and super-
horizon scales. At the end of inflation, we switch to
a lattice code, which solves the full nonlinear field
equation, but ignores the fluctuations of the met-
ric. This is reasonable because although the field
becomes highly nonlinear, the metric fluctuation still
remains small. Moreover, we chose a simulation vol-
ume which is comparable to the comoving size of the
horizon at the end of inflation since fragmentation
happens on subhorizon scales (for the model consid-
ered). After the end of inflation modes never leave
the horizon since the horizon grows faster than the
scale factor. As a result, horizon related metric ef-
fects only matter right at the end of inflation for our
simulation volume, and can be ignored thereafter.

With these considerations, we include metric fluc-
tuations in calculating the initial conditions for the
fluctuations at the end of inflation, but ignore them
in the lattice simulation.

A. Homogeneous inflaton dynamics

The homogeneous dynamics of the field and the
metric are controlled by

'̈I + 3H'̇I + @IV = 0,

H2 =
1

3m2

Pl


1

2
�IJ '̇I '̇J + V

�
.

(21)

Recall that '1 =
p

2|�| cos ✓ and '2 =
p

2|�| sin ✓.
Solving the above system numerically, we find that
in the '1 � '2 plane, the field maintains a constant
angle during inflation when the symmetry breaking
terms are subdominant:

✓
inf

= tan�1('2/'1) = const. (22)

After the end of inflation ✓ can vary, but its variation
is suppressed by the size of the symmetry breaking
term. In Fig. 1 we show a typical homogeneous
trajectory. Note that this is a qualitative picture,
the spiral is invisible for typical values of our chosen
parameters.

In the usual A✏eck-Dine baryogenesis, the
A✏eck-Dine condensate is rotating in the complex
plane. In contrast, the homogeneous mode here
maintains a collinear motion in the complex plane.

B. Linearized perturbations

For this section, our results are valid for N real
fields. For the case at hand, N = 2.

When the field fluctuations are small, we can lin-
earize the equations of motion for the field pertur-
bations around the homogeneous values: 'I + �'I .
In Fourier space, the linearized equations of motion
become

�'̈I
k

+ 3H�'̇I
k

+


�I
J

k2

a2

+ @I@JV
�

�'J
k

= �2 
k

@IV + 4 ̇
k

'̇I .

(23)

The potential  
k

and its derivative  ̇
k

are deter-
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mined from the linearlized Einstein equations:

 ̇
k

+ H 
k

=
1

2m2

Pl

�IJ '̇I�'J
k

,

✓
Ḣ +

k2

a2

◆
 

k

=
1

2m2

Pl

�IJ

h
�'̇I�'̇J

k

+ �'J
k

'̈I
i
.

(24)
One can substitute the gravitational potential  

k

and its derivative  ̇
k

into the field equations for �'J
k

to get a (coupled) linear system for �'J . Formally,
we can write this linear system as

Lk(t) · �~'
k

(t) = 0, (25)

where

�~'
k

(t) =
⇥
�'1

k

(t), . . . , �'N
k

(t)
⇤T

. (26)

In the above equation Lk(t) is a linear, second-order-
in-time di↵erential operator that depends on k and
t. It is a N ⇥ N matrix. For our case the operator
Lk has the form

Lk · �'
k

(t) = � ~̈'
k

(t) + 3H� ~̇'
k

(t)

+
k2

a2

�~'
q

+M(t) · �~'
k

+
1

m2

Pl

h
X(t, k) · �~'

k

+Y(t, k) · � ~̇'
k

i
= 0.

(27)
The above system included scalar gravitational per-
turbations (terms / m�2

Pl ). The matrices X(t, k)
and Y(t, k) have the property X(t, k),Y(t, k) ! 0
as k/aH ! 1.

The solution to this linear system can be written
formally as

�~'
k

(t) =
NX

n=1

a
kn~un(t, k) + a⇤

�kn~u⇤
n(t, k), (28)

where for each n,

~un(t, k) =
⇥
u1

n(t, k), . . . , uN
n (t, k)

⇤T
,

Lk(t) · ~un(t, k) = 0.

(29)

Note that the solution has 2N constants of integra-
tion and 2N “vector” solutions. The appearance of
a⇤

�nk is due to our assumption that �'J
k

are Fourier
transforms of real fields. In component form

�'J
k

(t) =
NX

n=1

a
knuJ

n(t, k) + a⇤
�knuJ⇤

n (t, k). (30)
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FIG. 2. Di↵erent components of the power spectra of
the fields at the end of inflation (with ✓i = 0.7 ⇥ ⇡/3).
Inside the horizon, the diagonal components match the
Minkowski space power spectrum, whereas the cross
spectra are small. Outside the horizon, the perturba-
tion spectra (diagonal spectra (orange) and cross spec-
tra(green)) are much larger that the Minkowski space ap-
proximations (dashed line). Starting from Bunch-Davies
initial conditions deep inside the horizon during inflation,
we evolved the perturbations including metric pertur-
bations self consistently. Ignoring metric perturbations
underestimates the spectra on superhorizon scales.

1. Quantization and power spectra

We now follow the usual canonical quantization
procedure and elevate ank and a⇤

nk to operators.

a
kn ! â

kn,

a⇤
kn ! â†

kn,
(31)

that satisfy the following commutation relations

[â
qn, â

km] = 0,
h
â
qn, â†

km

i
= �(q � k)�nm.

(32)

Notationally, this means putting “hats” on �'J
k

and
{ank, a⇤

�nk} in the mode expansion in Eq. (30). This
expansion in terms of creation and annihilation op-
erators is consistent with the one provided in the
last chapter of [26].4 Following [26], we chose the

4 We thank M. Hertzberg, D. Kaiser and J. Karouby for dis-
cussions regarding the need to solve for all the independent
solutions for the quantum problem. A discussion of multi-
field initial conditions will also be presented in an upcoming
review article [27].
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FIG. 2. Di↵erent components of the power spectra of
the fields at the end of inflation (with ✓i = 0.7 ⇥ ⇡/3).
Inside the horizon, the diagonal components match the
Minkowski space power spectrum, whereas the cross
spectra are small. Outside the horizon, the perturba-
tion spectra (diagonal spectra (orange) and cross spec-
tra(green)) are much larger that the Minkowski space ap-
proximations (dashed line). Starting from Bunch-Davies
initial conditions deep inside the horizon during inflation,
we evolved the perturbations including metric pertur-
bations self consistently. Ignoring metric perturbations
underestimates the spectra on superhorizon scales.

1. Quantization and power spectra

We now follow the usual canonical quantization
procedure and elevate ank and a⇤

nk to operators.

a
kn ! â

kn,

a⇤
kn ! â†

kn,
(31)

that satisfy the following commutation relations

[â
qn, â

km] = 0,
h
â
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= �(q � k)�nm.

(32)

Notationally, this means putting “hats” on �'J
k

and
{ank, a⇤

�nk} in the mode expansion in Eq. (30). This
expansion in terms of creation and annihilation op-
erators is consistent with the one provided in the
last chapter of [26].4 Following [26], we chose the

4 We thank M. Hertzberg, D. Kaiser and J. Karouby for dis-
cussions regarding the need to solve for all the independent
solutions for the quantum problem. A discussion of multi-
field initial conditions will also be presented in an upcoming
review article [27].
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Bunch-Davies vacuum as initial conditions. When
the modes are su�ciently deep inside the horizon
during inflation

uJ
n(t, k) ! �J

n

exp
h
�ik

R t
tin

d⌧
a(⌧)

i

(2⇡)3/2a(t)
p

2k
. (33)

Here, t
in

stands for a time when modes of interest
are deep inside the horizon.

We can now evolve uJ
n(t, k) from deep inside the

horizon during inflation, through horizon crossing
and up to the end of inflation. It is convenient to
decompose the complex uJ

n in terms of two real func-
tions as follows.

uJ
n(t, k) =

1

(2⇡)3/2a(t
in

)
p

2k


fJ

n (t, k) � H(t
in

)gJ
n(t, k) � i

k

a(t
in

)
gJ

n(t, k)

�
. (34)

The benefit of using fJ
n and gJ

n is numerical ease.
They are real functions satisfying

fJ
n (t

in

, k) = ġJ
n(t

in

, k) = �J
n ,

ḟJ
n (t

in

, k) = gJ
n(t

in

, k) = 0.
(35)

The Bunch-Davies initial conditions are taken care
of using the k dependent coe�cients. Evolving fJ

n
and gJ

n we can obtain the mode functions as well as
the power spectra at any time where the linearized
analysis is valid. Once we have the mode evolution,
we can calculate correlation functions for the fields
on any scale.

Using the commutation relations, the correlation
functions for the fields are then given by5

h0|�'̂I
q

(t)�'̂J†
k

(t)|0i = �(q � k)P IJ(t, k), (36)

where

P IJ(t, k) =
NX

n=1

uI
n(t, k)uJ⇤

n (t, k). (37)

Note that the cross correlations are not necessarily
zero and can be important, especially on superhori-
zon scales. This aspect has been ignored in the lit-
erature for setting up initial conditions for lattice
simulations (to the best of our knowledge).6

For our two field model at hand, we plot the dif-
ferent components of the power spectra at the end
of inflation. Note that the diagonal spectra con-
verge to the Minkowski one deep inside the hori-
zon, whereas the cross-spectra have an interesting

5 Note that our Fourier convention is f(x) =
R
d3qf

q

eiq·x.
6 Multifield mode evolution for calculating CMB observables
has been done before, see for example [28, 29]. We thank
Peter Adshead for pointing us to these references.

plateau like behavior resulting from higher order cor-
rections in aH/k (which can be derived by a careful
WKB analysis):

P II(k, t) ! 1

(2⇡)3a2(t)2k
k � aH,

P IJ(k, t) ! O[aH/k)3] I 6= J, k � aH.

(38)

Above we assume that k/a is larger than the e↵ec-
tive mass from the potential and from gravitational
e↵ects. On superhorizon scales, the departure from
Minkowski space power spectrum as well as the e↵ect
of metric perturbations is significant. Moreover the
cross spectra are also non-negligible on superhorizon
scales.

Once we obtain P IJ(t, k) at the end of inflation,
we can populate the modes on the lattice assuming
a Gaussian distribution of amplitude with uncorre-
lated phases. To do so, it is convenient to chose
a basis where P IJ(t

end

, k) is diagonal. After popu-
lating the lattice using the above spectra, we rotate
back to the original basis in the complex plane. This
rotation back to the original basis is necessary. The
final asymmetry generated depends on the breaking
of U(1) symmetry, and is sensitive to the angle of
the homogeneous trajectory in the complex plane.

Note that we have decided to self-consistently
evolve mode functions with Bunch-Davies initial
conditions from the time that modes are deep in-
side the horizon during inflation, up to the end of
inflation. We could have chosen an instantaneous
lowest energy state for each mode at the end of
inflation. However, such a lowest energy state be-
comes ill-defined for modes outside the horizon [57].7

7 Mode functions can be formally defined in this case also,
see for example section 6.5 in [57]. We thank D. Kaiser for
bringing the issue of instantaneous vacuum to our atten-
tion.
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One can substitute the gravitational potential  

k

and its derivative  ̇
k

into the field equations for �'J
k

to get a (coupled) linear system for �'J . Formally,
we can write this linear system as

Lk(t) · �~'
k

(t) = 0, (25)

where

�~'
k

(t) =
⇥
�'1

k

(t), . . . , �'N
k

(t)
⇤T

. (26)

In the above equation Lk(t) is a linear, second-order-
in-time di↵erential operator that depends on k and
t. It is a N ⇥ N matrix. For our case the operator
Lk has the form

Lk · �'
k

(t) = � ~̈'
k

(t) + 3H� ~̇'
k

(t)

+
k2

a2

�~'
q

+M(t) · �~'
k

+
1

m2

Pl

h
X(t, k) · �~'

k

+Y(t, k) · � ~̇'
k

i
= 0.

(27)
The above system included scalar gravitational per-
turbations (terms / m�2

Pl ). The matrices X(t, k)
and Y(t, k) have the property X(t, k),Y(t, k) ! 0
as k/aH ! 1.

The solution to this linear system can be written
formally as

�~'
k

(t) =
NX

n=1

a
kn~un(t, k) + a⇤

�kn~u⇤
n(t, k), (28)

where for each n,

~un(t, k) =
⇥
u1

n(t, k), . . . , uN
n (t, k)

⇤T
,

Lk(t) · ~un(t, k) = 0.

(29)

Note that the solution has 2N constants of integra-
tion and 2N “vector” solutions. The appearance of
a⇤

�nk is due to our assumption that �'J
k

are Fourier
transforms of real fields. In component form

�'J
k

(t) =
NX

n=1

a
knuJ

n(t, k) + a⇤
�knuJ⇤

n (t, k). (30)
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FIG. 2. Di↵erent components of the power spectra of
the fields at the end of inflation (with ✓i = 0.7 ⇥ ⇡/3).
Inside the horizon, the diagonal components match the
Minkowski space power spectrum, whereas the cross
spectra are small. Outside the horizon, the perturba-
tion spectra (diagonal spectra (orange) and cross spec-
tra(green)) are much larger that the Minkowski space ap-
proximations (dashed line). Starting from Bunch-Davies
initial conditions deep inside the horizon during inflation,
we evolved the perturbations including metric pertur-
bations self consistently. Ignoring metric perturbations
underestimates the spectra on superhorizon scales.

1. Quantization and power spectra

We now follow the usual canonical quantization
procedure and elevate ank and a⇤

nk to operators.

a
kn ! â

kn,

a⇤
kn ! â†

kn,
(31)

that satisfy the following commutation relations

[â
qn, â

km] = 0,
h
â
qn, â†

km

i
= �(q � k)�nm.

(32)

Notationally, this means putting “hats” on �'J
k

and
{ank, a⇤

�nk} in the mode expansion in Eq. (30). This
expansion in terms of creation and annihilation op-
erators is consistent with the one provided in the
last chapter of [26].4 Following [26], we chose the

4 We thank M. Hertzberg, D. Kaiser and J. Karouby for dis-
cussions regarding the need to solve for all the independent
solutions for the quantum problem. A discussion of multi-
field initial conditions will also be presented in an upcoming
review article [27].
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includes metric perturbations

Full multified evolution with metric fluctuations on super and subhorizon scales.



Linearized Perturbations: instabilities
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FIG. 1. A qualitative picture of the homogenous evo-
lution of the complex inflaton field. During inflation,
the symmetry breaking term is suppressed. As a result
✓i = ✓

inf

= constant.

where J = 1, 2. Note that the covariant deriva-
tives include the homogeneous and the inhomoge-
neous parts of the metric. The potential in terms of
the two fields is as follows:

V = V
s

+ V
br

,

V
s

= m2M2

"r
1 +

�IJ'I'J

M2

� 1

#
,

V
br

=
c
3

3
p

2

m2

M

('1)3 � 3'1('2)2

f('1, '2)
.

(20)

As usual, repeated indices are summed over.
We can solve Eq. (19) along with appropriate

Einstein equations on a lattice, without further ap-
proximations. However, it would be a waste of com-
putational resources to use the lattice simulations
when the perturbations are small. For evolution
during inflation and up to the end of inflation (or
until the fluctuations in the field remain small com-
pared to the background), we will solve the above
system after linearizing in the field fluctuations. We
include the metric fluctuations here since they are
important for perturbations on horizon and super-
horizon scales. At the end of inflation, we switch to
a lattice code, which solves the full nonlinear field
equation, but ignores the fluctuations of the met-
ric. This is reasonable because although the field
becomes highly nonlinear, the metric fluctuation still
remains small. Moreover, we chose a simulation vol-
ume which is comparable to the comoving size of the
horizon at the end of inflation since fragmentation
happens on subhorizon scales (for the model consid-
ered). After the end of inflation modes never leave
the horizon since the horizon grows faster than the
scale factor. As a result, horizon related metric ef-
fects only matter right at the end of inflation for our
simulation volume, and can be ignored thereafter.

With these considerations, we include metric fluc-
tuations in calculating the initial conditions for the
fluctuations at the end of inflation, but ignore them
in the lattice simulation.

A. Homogeneous inflaton dynamics

The homogeneous dynamics of the field and the
metric are controlled by

'̈I + 3H'̇I + @IV = 0,

H2 =
1

3m2

Pl


1

2
�IJ '̇I '̇J + V

�
.

(21)

Recall that '1 =
p

2|�| cos ✓ and '2 =
p

2|�| sin ✓.
Solving the above system numerically, we find that
in the '1 � '2 plane, the field maintains a constant
angle during inflation when the symmetry breaking
terms are subdominant:

✓
inf

= tan�1('2/'1) = const. (22)

After the end of inflation ✓ can vary, but its variation
is suppressed by the size of the symmetry breaking
term. In Fig. 1 we show a typical homogeneous
trajectory. Note that this is a qualitative picture,
the spiral is invisible for typical values of our chosen
parameters.

In the usual A✏eck-Dine baryogenesis, the
A✏eck-Dine condensate is rotating in the complex
plane. In contrast, the homogeneous mode here
maintains a collinear motion in the complex plane.

B. Linearized perturbations

For this section, our results are valid for N real
fields. For the case at hand, N = 2.

When the field fluctuations are small, we can lin-
earize the equations of motion for the field pertur-
bations around the homogeneous values: 'I + �'I .
In Fourier space, the linearized equations of motion
become

�'̈I
k

+ 3H�'̇I
k

+


�I
J

k2

a2

+ @I@JV
�

�'J
k

= �2 
k

@IV + 4 ̇
k

'̇I .

(23)

The potential  
k

and its derivative  ̇
k

are deter-
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FIG. 3. Floquet charts for field fluctuations: parallel to the motion of the homogeneous field (left) and perpendicular
to the motion of the homogeneous field (right). The vertical axis is the amplitude of oscillation of the homogeneous
mode (assumed to be in the '1 directions). Lighter colors correspond to unstable regions. The legend shows the
magnitude of the real part of the Floquet exponent: <(µk)/m. Note that the parallel perturbations have a broad,
strong instability band near k . 0.5m which is not present for the perpendicular perturbations.

While other prescriptions might be possible, we be-
lieve that our prescription is unambiguous and phys-
ically well grounded because we start with initial
conditions deep inside the horizon where all gravita-
tional e↵ects as well as interactions can be ignored.

Once the initial conditions are set, we use Lat-

ticeEasy [51] to evolve the fields. Before presenting
the results of our simulations, we provide a linear
analysis of the instabilities in the oscillating infla-
ton condensate. For the interested reader, we also
provide the formalism to calculate the inflaton asym-
metry based on the linearized fluctuations in the Ap-
pendix.

2. Floquet analysis

Soon after inflation ends, the almost homogeneous
inflaton field starts oscillating around the minimum.
The nonlinearities in the potential lead to an insta-
bility in the field fluctuations. The instability can be
understood in terms of Floquet theory that applies
to linear equations of motion with periodic coe�-
cients. Our linearized equations of motion for the
fluctuations do not have strictly periodic coe�cients
because of expansion as well as due to the symmetry
breaking terms. For su�ciently subhorizon scales
and rapid growth, we can ignore the Hubble expan-
sion (i.e. we set H = 0 and a = 1 for this section).
For this section we also assume that V

br

⌧ V
s

. With

these assumptions, as a first approximation, we ar-
rive at

�'̈I
k

+
⇥
�I
Jk2 + @I@JV

s

⇤
�'J

k

⇡ 0. (39)

In absence of the symmetry breaking term, one can
always rotate our field axes so that the homogeneous
field is entirely along the '1 direction. In this case
the equations of motion become:

�'̈1

k

+


k2 +

m2

(1 + ('1)2/M2)3/2

�
�'1

k

⇡ 0,

�'̈2

k

+

"
k2 +

m2

p
1 + ('1)2/M2

#
�'2

k

⇡ 0.

(40)

As the field oscillates, the coe�cients of both equa-
tions are periodic in time. According to Floquet
theory, for each equation, the growing solution can
be written as

�'J
k

(t, k) = PJ
1k

(t)eµJ
k t + PJ

2k

(t)e�µJ
k t, (41)

where PJ
1,2k(t) are periodic functions of time whereas

µJ
k are Floquet exponents. For a simple algorithm to

calculate the exponents, in similar notation, see the
Appendix of [42]. If the Floquet exponents have a
real part, then we have exponentially growing solu-
tions. We plot the real part of the Floquet exponents
as a function of the amplitude of oscillations of the
background field and the wavenumber k in Fig. 3.
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what are these lumps?
(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov 1976, Gleiser 1994, Copeland 1995!
!
Long wavelength stability: MA & Shirokoff 2010!
Existence conditions (including non-canonical cases): MA 2013!
Oscillons after Inflation: MA, Easther, Finkel, Hertzberg 2011
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“actual” dynamics

t = 140m�1 t = 150m�1

t = 200m�1 t = 300m�1

313m�1

182m�1

FIG. 4. The homogeneous inflaton condensate starts fragmenting within ⇠ 20 oscillations after the end of inflation.
The fragmentation is driven by parametric resonance in the fluctuations along the direction of motion of the field.
After the perturbations become nonlinear, localized, long-lived field configurations called oscillons form and dominate
the energy density of the inflaton field. The oscillons once formed maintain a fixed size and density, and can be very
long lived with lifetimes � m�1, H�1. They are highly over dense regions, the contours in the above plots are drawn
at 5⇥ the average density. Most of the inflaton asymmetry is locked in these oscillons although they occupy a small
fraction of the volume. The co-moving size of the box is comparable to the Hubble horizon at the end of inflation.

magnitude-squared of the field profile matched bet-
ter with a sinusoidal time dependence. 9

Furthermore, the ratio of the real and imaginary
parts of the field inside the two types of pseudo-
solitons is given by

<(�)

=(�)
⇡

(
const, oscillons,

tan(!t), Q-balls.
(45)

Again, for our sampled objects we found that this
ratio was constant, consistent with oscillons.

9 We also note that the oscillons we find here have a breathing
mode (as seen in [5]) making the higher order terms ignored
above also relevant.

For the length of the simulation, we found that our
sample objects were oscillons. However, [30] have ar-
gued that similar fragmentation, albeit in a di↵erent
potential and without a symmetry breaking term,
generates Q-balls. We cannot rule out the possibil-
ity that if one waits for a longer time (t � 300m�1)
some of the oscillons will become Q-balls.

We note that the motion of the field inside the
scalar field lumps cannot be purely radial. Since in
this case the asymmetry is obviously zero. Some de-
viation from collinear motion in the complex plane,
sourced by the symmetry breaking term and/or by
nonlinear couplings between the radial and tangen-
tial directions, is necessary for there to be non-zero
asymmetry. The exact nature of “oscillon like” solu-
tions and their corresponding asymmetry is left for

10
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FIG. 5. Evolution of the inflaton/anti-inflaton asym-
metry as a function of time. The asymmetry is zero
at the end of inflation (t = 0). Asymmetry is gener-
ated during the explosive dynamics after the end of in-
flation. After the inflaton fragments into localized soli-
tons (t ⇠ 150m�1), the asymmetry settles down to a
constant value. We have not checked the asymmetry for
significantly longer timescales due to numerical consid-
erations. Although not shown above, a similar plot for
the asymmetry for the homogeneous case continues to
show large oscillations and settles down at a much later
time t � 103m�1.

future work. We will continue to call our overdensi-
ties oscillons in what follows.

Although we are dealing with a two field model (or
one complex field), the dynamics is very similar to
a single real field scenario discussed in [5]. We find
that the oscillons are ⇠ 10m�1 in width with varying
amplitudes � M . The fields inside oscillons oscil-
late in phase with a frequency . m. The detailed
profiles of oscillons and their lifetimes [19, 45–47],
interactions [48, 49], their size distribution [36, 50]
etc. will be studied elsewhere.

3. Simulation details

We carry out a 3+1 dimensional lattice simulation
of the fields in an expanding universe using a mod-
ified version of LatticeEasy [51]. As noted earlier,
we ignore metric perturbations in the lattice code
(although we include them in the initial conditions).
Explicitly we solve the following equations in their
discretized form

'̈I + 3H'̇I � r2

a2

'I + @IV = 0,

H2 =
1

3m2

Pl


1

2
�IJ

✓
'̇I '̇J +

r'I

a
· r'J

a

◆
+ V

�

avg

,

(46)
where I, J = 1, 2 and the potential is defined in Eq.
(20). The right hand side of the H2 equation is
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FIG. 6. The ratio of the inflaton asymmetry in regions
with twice the average density to the total asymmetry
(orange curve is smoothed over a few oscillations). Af-
ter t ⇡ 150, the over dense regions are composed of
localized pseudo-solitons (oscillons). Once oscillons are
formed, most of the asymmetry is locked inside them
with a final value of A

osc

/A
tot

⇡ 0.7 . A qualitatively
similar behavior is found if we consider regions with ten
times the average density instead. For that case we get
A

osc

/A
tot

⇡ 0.6.

spatially averaged.

Our initial simulation volume was chosen to be
L = 25m�1, whereas the Hubble horizon at this ini-
tial time is H�1 ⇡ 23m�1. We also varied the initial
size of the box between L = 25m�1 and L = 50m�1

and found no significant di↵erence between the re-
sults. This is due to the fact that resonance in
our model is restricted to subhorizon scales. For
L = 50m�1, the initial power spectrum on super-
horizon scales is needed so as to not underestimate
the power on those scales. While for this particular
model, this superhorizon power does not a↵ect the
answers significantly, this need not be the case in
general.

We ran our simulations for a period of 300 m�1

after the end of inflation during which the universe
expands by a factor of ⇡ 12 (and the simulation
volume continues to remain sub-Hubble). Beyond
this point, we run into resolution issues, mainly be-
cause oscillons maintain a fixed physical size as the
‘grid’ expands. It is certainly feasible to run longer,
higher resolution simulations. But for our purposes,
we found a lattice with 1283 points to be su�cient.
We have checked that up to t� t

end

⇠ 300m�1 there
were no qualitative di↵erence between a 2563 and
1283 runs.
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Asymmetry generated at the end of inflation, and freezes after fragmentation
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future work. We will continue to call our overdensi-
ties oscillons in what follows.

Although we are dealing with a two field model (or
one complex field), the dynamics is very similar to
a single real field scenario discussed in [5]. We find
that the oscillons are ⇠ 10m�1 in width with varying
amplitudes � M . The fields inside oscillons oscil-
late in phase with a frequency . m. The detailed
profiles of oscillons and their lifetimes [19, 45–47],
interactions [48, 49], their size distribution [36, 50]
etc. will be studied elsewhere.

3. Simulation details

We carry out a 3+1 dimensional lattice simulation
of the fields in an expanding universe using a mod-
ified version of LatticeEasy [51]. As noted earlier,
we ignore metric perturbations in the lattice code
(although we include them in the initial conditions).
Explicitly we solve the following equations in their
discretized form
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where I, J = 1, 2 and the potential is defined in Eq.
(20). The right hand side of the H2 equation is
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spatially averaged.

Our initial simulation volume was chosen to be
L = 25m�1, whereas the Hubble horizon at this ini-
tial time is H�1 ⇡ 23m�1. We also varied the initial
size of the box between L = 25m�1 and L = 50m�1

and found no significant di↵erence between the re-
sults. This is due to the fact that resonance in
our model is restricted to subhorizon scales. For
L = 50m�1, the initial power spectrum on super-
horizon scales is needed so as to not underestimate
the power on those scales. While for this particular
model, this superhorizon power does not a↵ect the
answers significantly, this need not be the case in
general.

We ran our simulations for a period of 300 m�1

after the end of inflation during which the universe
expands by a factor of ⇡ 12 (and the simulation
volume continues to remain sub-Hubble). Beyond
this point, we run into resolution issues, mainly be-
cause oscillons maintain a fixed physical size as the
‘grid’ expands. It is certainly feasible to run longer,
higher resolution simulations. But for our purposes,
we found a lattice with 1283 points to be su�cient.
We have checked that up to t� t

end

⇠ 300m�1 there
were no qualitative di↵erence between a 2563 and
1283 runs.
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FIG. 9. Asymmetry as a function of mPl/M (with all
other parameters fixed). The black points and curve
correspond to the homogeneous case, whereas the or-
ange points correspond to the results from lattice simula-
tions. Note that the di↵erence between the homogeneous
and lattice case becomes larger and larger as mPl/M
increases. The ratio mPl/M can be interpreted as the
fragmentation e�ciency parameter (see Eq.(42)). How-
ever, the symmetry breaking term also gets suppressed
in the high density regions resulting from fragmentation.
Hence both the fragmentation into high density regions
and the suppression of asymmetry in high density regions
due to the form of the symmetry breaking term deter-
mine the decrease in asymmetry as a function of mPl/M
seen in the above figure.

ing term, V
br

/ |�|3/(1 + |�|2/M2)2. For |�| ⌧ M ,
we get V

br

/ M/|�|. As a result in large field am-
plitude regions generated by fragmentation, the ef-
fect of the symmetry breaking terms (and hence the
asymmetry) is suppressed. In this argument, we
have assumed that the maximum amplitude of the
dense regions is independent of M .

C. Inflaton asymmetry to observed
baryon-to-photon ratio

So far we have discussed the inflaton asymme-
try in great detail. However, the observable we
are ultimately interested in is the baryon asymme-
try, more specifically the baryon-to-photon ratio ⌘.
The discussion below is based on [14], however a
fragmented inflaton introduces additional subtleties.
Our main aim here is to connect the inflaton asym-
metry to ⌘ observed today. We will comment on the
di↵erences between the homogeneous case (studied

in [14]) and our highly fragmented scenario as we
present a sketch of how the decay might proceed be-
low.

First, at some time t� the asymmetry A� freezes
out as seen in Fig. 5. Thereafter, the inflaton/anti-
inflatons decay into baryons and anti-baryons by
some time

t
�

⇠ ��1

� , (50)

where �� is the decay rate of the inflaton to baryons.
Within any particular particle physics embedding
(see for example [14]) we can calculate �� for “inco-
herent” decay. However, the high density, coherent
oscillon/Q-balls configurations might a↵ect the de-
cay rate [45, 58, 59] significantly. We treat �� as a
free parameter in what follows. 10After t

�

we assume
that there are no baryon number violating processes.
At t

�

we have

Nb � N
¯b = b�(N� � N�⇤)t� , (51)

where b� = 1 or 1/3 is the baryon number associated
with the inflaton particles. For the right hand side,
we assume that (N� � N�⇤) is approximately con-
stant between t� and t

�

. We can write it in terms
of our asymmetry parameter as follows:

(N� � N�⇤)t� =

✓
A�

E�

m

◆

t�

=

✓
A�

E�

m

◆

t�

, (52)

where we used the definition of the inflaton asymme-
try and E� is the energy of the inflaton field(s) in the
volume of interest. The expression evaluated at t�
is what we have calculated in the previous sections.

On the left-hand-side of Eq. (51), the number of
baryons minus the number of anti-baryons is fixed,
after t

�

. Hence this quantity is constant and can be
evaluated at late times (after thermalization, and af-
ter photon number changing processes have become
ine�cient):

Nb � N
¯b = (⌘N�)

late

, (53)

where N� is the number of photons for the volume
of interest. Using Eqs. (51, 53 and 52) and using
spatially averaged densities, we have

⌘
late

= b�m�1

�
A�a3⇢̄�

�
t� or t�

(a3n̄�)
late

. (54)

10 It is possible to imagine t� ⌧ t
�

or they might be compa-
rable depending on the details of the decay.
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non-trivial, depends on fragmentation and likely on the form of the symmetry-breaking term!
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FIG. 7. Inflaton asymmetry as a function of the ini-
tial angle made by the homogeneous inflaton field in the
complex plane for di↵erent values of c

3

. The black curve
corresponds to the homogeneous case, whereas the or-
ange points are results of lattice simulations. This sinu-
soidal behavior seen for c

3

= 10�2 is seen for all c
3

⌧ 1.
The ⇡/3 period is related to the form of the symmetry
breaking term. When c

3

. 1, both the homogeneous and
fragmented curves become much more complicated, no
longer remaining sinusoidal. However, the ⇡/3 period is
still respected.
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FIG. 8. Inflaton asymmetry as a function of symme-
try breaking parameter, with all other parameters fixed
(✓i = 0.7 ⇥ ⇡/3,M = 10�2mPl). The black points cor-
respond to the homogeneous case, whereas the orange
points correspond to the results from a full lattice sim-
ulation. For c

3

⌧ 1, in both cases A� / c2
3

, with the
inhomogeneous value always being below the homoge-
neous one.

c
3

with a fixed initial angle and fixed M . Similar
behavior is seen for di↵erent choices of ✓i.

The quadratic dependence on c
3

helps in signif-
icantly reducing the value of the asymmetry when
c
3

⌧ 1. This is di↵erent from the linear dependence
on c

3

found for m2|�|2 inflation [14].

3. Dependence on fragmentation

The parameter M controls the field value where
the potential changes from a quadratic, to a nonlin-
ear potential (see Sec. II). In terms of the dynamics
of the inflaton the ratio ⇠ mPl/M controls the ef-
ficiency with which the inflaton fragments due to
parametric resonance in an expanding universe (see
Sec. III B 2). We plot the dependence of the asym-
metry on mPl/M in Fig. 9. The asymmetry for
the fragmented scenario starts deviating from the
homogeneous case when mPl/M & 50. After that
point, as the fragmentation e�ciency increases the
asymmetry decreases. This shows the importance of
considering a full lattice simulation for calculating
the asymmetry compared to the homogeneous case.

While it is clear that fragmentation plays a role,
the actual reason behind the asymmetry suppression
when M ⌧ mPl is nontrivial. The symmetry break-
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units where c = ~ = 1 and use the reduced Planck
mass throughout mPl = 1/

p
8⇡G. We will assume

an approximately FRW universe with a metric of the
form1

ds2 = � [1 + 2 (t,x)] dt2 + a2(t) [1 � 2 (t,x)] dx2,
(2)

where a(t) is the scalefactor. We include the metric
perturbations for the calculation of initial conditions
for our lattice simulations. However, for subsequent
nonlinear evolution after the end of inflation (on sub-
horizon scales), we assume an FRW metric.

II. INFLATON MODEL AND ASYMMETRY

In this section we model the inflaton, the breaking
of global U(1) symmetry and define some relevant
measures of the inflaton/anti-inflaton asymmetry.

A. The inflaton model

We model the inflaton as a complex scalar field �,
whose action is given by

S =

Z
d4x

p�g


m2

Pl

2
R � gµ⌫@µ�@⌫�⇤ � V (�, �⇤)

�
,

(3)
where gµ⌫ is the metric, g is the determinant of gµ⌫

and R is the Ricci scalar. The equation of motion of
the inflaton � is

gµ⌫rµr⌫� � @�⇤V (�, �⇤) = 0. (4)

The conjugate of Eq. (4) yields the equation of mo-
tion for �⇤.

The potential V (�, �⇤) consists of two parts:

V (�, �⇤) = V
s

(|�|) + V
br

(�, �⇤), (5)

where V
s

(|�|) respects the global U(1) symmetry:
� ! ei✓�. This part of the potential controls the dy-
namics of the field during and after inflation (though
there are some corrections from V

br

). V
br

(�, �⇤) on
the other hand, breaks the global U(1) symmetry,
and is chosen to be subdominant, at least energeti-
cally, at all times. For concreteness, we assume the

1 We set the two metric potentials equal to each other. This
is valid for a linear calculation in both the metric and the
field fluctuations for canonical scalar fields.

following form for V
s

(|�|):

V
s

(|�|) = m2M2

"r
1 + 2

|�|2
M2

� 1

#
,

=

8
><

>:

m2|�|2 � m2

2M2 |�|4 + . . . |�| ⌧ M

p
2m2M |�| � m2M2 + . . . |�| � M.

(6)
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Since f(|�|) � 1 during inflation, it naturally sup-
presses the symmetry breaking term during infla-
tion.2 We prefer to work with this form of the sym-
metry breaking term since we wish to explore the c
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2 One could imagine such a factor arising due to a conformal
transformation from the Jordan to Einstein frame.
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mass throughout mPl = 1/
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an approximately FRW universe with a metric of the
form1

ds2 = � [1 + 2 (t,x)] dt2 + a2(t) [1 � 2 (t,x)] dx2,
(2)

where a(t) is the scalefactor. We include the metric
perturbations for the calculation of initial conditions
for our lattice simulations. However, for subsequent
nonlinear evolution after the end of inflation (on sub-
horizon scales), we assume an FRW metric.

II. INFLATON MODEL AND ASYMMETRY

In this section we model the inflaton, the breaking
of global U(1) symmetry and define some relevant
measures of the inflaton/anti-inflaton asymmetry.
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and is chosen to be subdominant, at least energeti-
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1 We set the two metric potentials equal to each other. This
is valid for a linear calculation in both the metric and the
field fluctuations for canonical scalar fields.
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Since f(|�|) � 1 during inflation, it naturally sup-
presses the symmetry breaking term during infla-
tion.2 We prefer to work with this form of the sym-
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2 One could imagine such a factor arising due to a conformal
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perturbations for the calculation of initial conditions
for our lattice simulations. However, for subsequent
nonlinear evolution after the end of inflation (on sub-
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Since f(|�|) � 1 during inflation, it naturally sup-
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2 One could imagine such a factor arising due to a conformal
transformation from the Jordan to Einstein frame.

3

(inverse) strength of instability

|�| ⇠ M



inflaton to baryons (incomplete!)

Linearized Multifield Dynamics, Correlation Functions

and

Initial Conditions

Mustafa Amin and Kaloian Lozanov

July 1, 2014

A� ⇠ O[10

�2
]⇥

✓
M

mPl

◆
c23 sin 3✓i (1)

Vb(�,�
⇤
) ⇠ c3

3

⇣m�

M

⌘
m�

�
�3

+ �⇤3�
(2)

Vb(�,�
⇤
) ⇠ c3

3

�
�3

+ �⇤3�
(3)

⌘ ⇠ O[10

2
]⇥ A�

✓
Treh

m�

◆
(4)

1

caveats: uncertainty here!! particle physics details, inhomogeneous decay …

from end of inflation
decay rate to baryons

sample numbers: A� ⇠ 10�4, T ⇠ 107 GeV, m� ⇠ 1014 GeV

⇠ 10�9



• isocurvature fluctuations !

• (usual Affleck-Dine runs into problems with isocurvature 
for high scale inflation)!

• dark matter !

• change in expansion history — number of e-folds

other connections …

that the fragmentation does a↵ect the inflaton asym-
metry significantly. The value of the asymmetry as
well as its spatial distribution are qualitatively and
quantitatively di↵erent from the homogeneous case.
In general, the asymmetry in the fragmented case is
smaller than the one derived by ignoring the frag-
mentation. Inspite of the complex dynamics, we
were able to provide a simple (empirical) formula
for the inflaton asymmetry, expressing it in terms
of the parameters of the Lagrangian and initial con-
ditions in a physically transparent manner (see Eq.
(48)).

While we provided a detailed analysis of the asym-
metry generation in the inflaton, we provided a com-
paratively simple analysis of the decay to baryons.
How this decay takes place in a highly inhomoge-
neous inflaton field configuration, and the details
of subsequent annihilation of the baryons and anti-
baryons is left for future work. We provided an esti-
mate for the baryon-to-photon ratio (see Eqns. (57)
and (58)) under simplified assumption of rapid ther-
malization (amongst others). This estimate should
be checked by a detailed analysis of the inflaton
decay, inhomogeneous annihilation and subsequent
thermalization.

On the theoretical side a few additional problems
need to be addressed. While we argued heuristi-
cally for the form of the inflaton asymmetry, a more
detailed understanding is needed. We have not ex-
plored the properties of oscillons generated here in
detail. Their lifetimes, distribution of amplitudes,
sizes and interactions would be useful. Importantly,
longer time-scale simulations (with an initial higher
resolution) are needed to quantify the long term be-
havior of the asymmetry. It would be a useful check
to carry out these simulations using other existing
codes (besides LatticeEasy), each with their owns
benefits [52–56].

A. Additional observational consequences

Beyond the baryon-to-photon ratio, the scenario
for baryogenesis is rich in terms of other potential
observational implications. We briefly discuss a few
of them below.

Isocurvature modes are generated during inflation
due to the presence of the light “angular” compo-
nent of the complex field [14]. For our model, this
leads to an isocurvature fraction, ↵II ⇠ 2.6 ⇥ 10�4,
which is two orders of magnitude below the current
constraints [40]. Note that these isocurvature modes

are not due to fragmentation.11.
The initial fragmentation, and soliton formation

can lead to the generation of gravitational waves (see
for example [61–63]). In addition, a long phase of
soliton domination leads to a matter dominated ex-
pansion history before reheating takes place. This
change in the expansion history a↵ects the mapping
of modes between horizon exit during inflation and
re-entry at late times, thus a↵ecting our interpreta-
tion of inflationary observables [64–66].

The solitons found in the simulation might be ex-
tremely long lived, serving as dark matter candidates
[67]12 or they might decay into dark matter [68].

The inhomogeneous annihilation, if it is ine�cient
might lead to signatures during BBN or in the late
universe [69]. We hope that our work will motivate a
more detailed analysis of inhomogeneous decay, an-
nihilation and subsequent thermalization in similar
models.
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Appendix A: “Linearized” asymmetry
calculation

We can use the linearized equations of motion for
uJ

n(t, k) to calculate the inflaton asymmetry up to
the point where the nonlinearities become impor-
tant. Recall that

A�(t) = i
m

⇢̄�(t)a3(t)V
com

Z
d3

xa3

h
�⇤�̇ � ��̇⇤

i
,

(A1)
We can also write these expressions in terms of the
real and imaginary parts of the field (see Eq. (18)):

A�(t) =
m

a3(t)⇢̄�(t)V
com

Z
d3

xa3

⇥
'̇1'2 � '̇2'1

⇤
.

(A2)

11 Note that in a number of A✏eck-Dine Baryogeneis scenar-
ios the isocurvature modes are unacceptabely large for high
energy scale inflation (see for example [60]). However, the
large vev of the inflaton field (which doubles as the A✏eck-
Dine field) suppresses the isocurvature modes [14].

12 These authors considered Q-balls rather than oscillons. Q-
balls are likely to live longer than oscillons because of their
(approximately) conserved U(1) charge.
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• careful analysis needed:!

• inhomogeneous decay and annihilation to baryons!

• connection to isocurvature perturbations !

• dark matter connection?!

• detailed properties of the solitons (we have checked that they are 
oscillons    NOT    Q-balls)!

• particle physics model building

to do



different model: “long” wavelength asymmetry

V (|�|) = m2|�|2 + �|�|4
Lozanov & MA (in progress)
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connects reheating and baryon asymmetry, with additional observational implications
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Reheating — populating our universe 
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non-perturbative, complex dynamics with obs. 
implications …  
analytic and numerical techniques available (but 
long way to go) 
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beyond fluctuations 
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Help! — include end of inflation physics with inflation 
models 
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