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SYNOPSIS

- the inflaton model & asymmetry

- dynamics:

* homogeneous

- linearized dynamics - instabilities

- nonlinear dynamics - fragmentations & solitons
 asymmetry generation

- dependence on params.

- inflaton asymmetry — baryon asymmetry

- observational consequences



the model detalls

A variation of the Affleck-Dine Mechanism (1985)
Hertzberg & Karouby (2013)
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breaks U(1) symmetry
respects U(1) symmetry

responsible for inflation responsible for generating
5 inflation/antiinflaton asymmetry
VS(|¢|) — \/1 19 ‘]@2 ] small, symmetry breaking ...
observationally consistent choice Vi (b, ¢%) = m’ (¢3 T ¢*3)
3 M f(lo])

our choice: subdominant during and after inflation



inflaton asymmetry — baryon asymmetry

AN¢ = Ny — Ncﬁ — i/dgan (¢*¢ _ ¢*¢) inflaton number (not conserved!)

- generated at end of inflation

(,b — b decay

Ny, — NB — b¢(N¢ . ng) baryon number



inflaton dynamics
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Linearized Perturbations: Initial Conditions

includes metric perturbations
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Full multified evolution with metric fluctuations on super and subhorizon scales.



amplitude of background field

Linearized Perturbations: instabilities
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Also See: Hertzberg, Karouby, William G. Spitzer, Juana C. Becerra, Lanqging Li (2014)



“actual” dynamics Y

Fragmentation!

(1) highly nonlinear
(2) homogeneous analysis fails
(3) linear analysis helps to see the instability, but fails soon after ...
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Also see: Khlopov, Molamed and Zeldovich (1985)
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“actual” dynamics Y

Fragmentation!

(1) highly nonlinear
(2) homogeneous analysis fails
(3) linear analysis helps to see the instability, but fails soon after ...

MA (2010)
Also see: Khlopov, Molamed and Zeldovich (1985)
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Fragmentation!

(1) highly nonlinear
(2) homogeneous analysis fails
(3) linear analysis helps to see the instability, but fails soon after ...

MA (2010)
Also see: Khlopov, Molamed and Zeldovich (1985)



Fragmentation!

(1) highly nonlinear

“actual” dynamics Y

(2) homogeneous analysis fails
(3) linear analysis helps to see the instability, but fails soon after ...
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Also see: Khlopov, Molamed and Zeldovich (1985)



“actual” dynamics
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surfaces drawn at 5 x the avg. density

time after inflation = 120 m-' — 300 m-?
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“actual” dynamics

surfaces drawn at 5 x the avg. density

L. < g1 time after inflation = 120 m-' — 300 m-"

end



what are these lumps?

(1) oscillatory (2) spatially localized (3) very long lived

¢ ~ M Bogolubsky & Makhankov 1976, Gleiser 1994, Copeland 1995

Long wavelength stability: MA & Shirokoff 2010
Existence conditions (including non-canonical cases): MA 2013
Oscillons after Inflation: MA, Easther, Finkel, Hertzberg 2011



“actual” dynamics

surfaces drawn at 5 x the avg. density




inflaton dynamics — asymmetry generation



iInflaton asymmetry
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Asymmetry generated at the end of inflation, and freezes after fragmentation



where Is the asymmetry?

small volume occupied by solitons
— most of asymmetry!

AOSC/ AtOt




asymmetry- fragmentation

homogeneous
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efficiency of fragmentation

non-trivial, depends on fragmentation and likely on the form of the symmetry-breaking term!



dependence on params.



dependence on magnitude of symmetry breaking term

A¢ X cg important!
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inflaton asymmetry

dependence on initial angle
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inflaton asymmetry— dependence on parameters

Ay ~ O[10%] x @@Si "@

(inverse) strength of instability symmetry breaking initial conditions —inflation
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inflaton to baryons (incomplete!)

~ 1077

n ~ O[107] %

from end of inflation
decay rate to baryons

sample numbers: Ag ~ 107 T~ 10" GeV, my ~ 10" GeV

caveats: uncertainty here!! particle physics details, inhomogeneous decay ...



other connections ...

isocurvature fluctuations  arr ~ 2.6 x 1074

(usual Affleck-Dine runs into problems with isocurvature
for high scale inflation)

dark matter

change in expansion history — number of e-folds



to do

careful analysis needed:
Inhomogeneous decay and annihilation to baryons
connection to isocurvature perturbations
dark matter connection?

detailed properties of the solitons (we have checked that they are
oscillons NOT Q-balls)

particle physics model building



different model: “long” wavelength asymmetry

V(l¢]) =m?* + Alg*

Lozanov & MA (in progress)



The End of Inflation, Oscillons &
The Matter-Antimatter Asymmetry

_ .".;2. ratio of asymmetry in solitons/ total asymmetry
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complex inflaton y0(1)

connects reheating and baryon asymmetry, with additional observational implications



Our understanding: 7?-Inflation — g Nucleosynthesis

Reheating — populating our universe

e Nnon-perturbative, complex dynamics with obs.
implications ...

e analytic and numerical techniques available (but
long way to go)

connect intlationary physics to known physics and obs.
beyond fluctuations

Help! — include end of inflation physics with inflation
models

Mustafa Amin Cosmo 14



