Low-Energy Analyses of Data from SuperCDMS at Soudan

Adam Anderson

COSMO 2014
27 August 2014
Motivation for Light WIMPs

Important to better constrain existing and future anomalies
Motivation for Light WIMPs

Wide-open parameter space…
Remain agnostic!

\[
\text{WIMP\textunderscore nucleon cross section [cm}^2]\]

\[
\text{WIMP\textunderscore nucleon cross section [pb]}
\]

WIMP Mass [GeV/c^2]

\[
\text{7Be Neutrinos}
\]
\[
\text{8B Neutrinos}
\]

\[
\text{Atmospheric and DSNB Neutrinos}
\]

\[
\text{Billard, et al. arXiv:1307.5458}
\]
SuperCDMS Overview

- Upgrade to CDMS II experiment
- Ge detectors measure both ionization and phonons

0.6 kg Ge crystals
SuperCDMS Overview

- Upgrade to CDMS II experiment
- Ge detectors measure both ionization and phonons
- Detectors operate at 50 mK in 3He/4He dilution fridge
- Continuous operation from spring 2012 to July 2014
SuperCDMS Overview

- Upgrade to CDMS II experiment
- Ge detectors measure both ionization and phonons
- Detectors operate at 50 mK in $^3\text{He}/^4\text{He}$ dilution fridge
- Continuous operation from spring 2012 to July 2014
- 15 detectors x 0.6 kg = 9 kg target mass
SuperCDMS Overview

- Upgrade to CDMS II experiment
- Ge detectors measure both ionization and phonons
- Detectors operate at 50 mK in 3He/4He dilution fridge
- Continuous operation from spring 2012 to July 2014
- 15 detectors x 0.6 kg = 9 kg target mass
- Active and passive shielding surround detectors
iZIP Detectors

Charge/Phonon sensors

WIMP

E field
iZIP Detectors

Charge/Phonon sensors

prompt phonons

e- e-
h+

Charge/Phonon sensors

E field
iZIP Detectors

Prompt phonons

Phonon energy = $E_{\text{recoil}} + E_{\text{Luke}}$

Charge/Phonon sensors

Charge/Phonon sensors

h^+

e^-

E field
Position Sensitivity

phonon channels

ionization channels

75 mm
Probing Lighter WIMPs

![Graph showing WIMP scattering rate vs. recoil energy](image)

- **5 GeV WIMP**
- **10 GeV WIMP**
- **20 GeV WIMP**
Probing Lighter WIMPs

lower “effective” threshold

![Graph showing WIMP scattering rates vs. recoil energy for different WIMP masses (5 GeV, 10 GeV, 20 GeV). The graph displays a logarithmic scale for both WIMP scattering rates and recoil energy, with lines for each mass indicating the expected scattering rates at various energy levels.]
Probing Lighter WIMPs

reduce “effective” background

graph showing WIMP scatters / kg / d in Ge vs recoil energy [keV]

- 5 GeV WIMP
- 10 GeV WIMP
- 20 GeV WIMP
Two Approaches

1.) Improve exposure and background ID: Low-energy analysis of SuperCDMS data
Low-energy Analysis

- Use 7 detectors with lowest trigger thresholds (~1.6 keV - 5 keV)
- 577 kg-d of exposure (Oct. 2012 - July 2013)
- **Background discrimination still possible near threshold!!**
- **Blind** analysis optimized for exclusion
Dominant Backgrounds at Low Energy

210Pb “surface events”

- betas and 206Pb nuclei from 210Pb decay chain
- events are located on detector face and sidewall *surfaces* from 222Rn contamination

210Pb
- 22.3 y $^\beta$ 17.0 keV
- 16%: $^\beta$ 63.5 keV
- 5.01 d 210Bi
- 100%: $^\beta$ 1161.5 keV
- 138.4 d 210Po
- 100%: $^\alpha$ 5.3 MeV

206Pb
- 22.3 y $^\beta$ 17.0 keV
- 16%: $^\beta$ 63.5 keV
- 5.01 d 210Bi
- 100%: $^\beta$ 1161.5 keV
- 138.4 d 210Po
- 100%: $^\alpha$ 5.3 MeV

External gammas

- from radioactivity in shielding and cryostat

206Pb
- 103 keV

210Pb
- 22.3 y $^\beta$ 17.0 keV
- 16%: $^\beta$ 63.5 keV
- 5.01 d 210Bi
- 100%: $^\beta$ 1161.5 keV
- 138.4 d 210Po
- 100%: $^\alpha$ 5.3 MeV

Internal activation lines

- L-shell capture from 68,71Ge, 65Zn, 68Ga

Copper housings
Dominant Backgrounds at Low Energy

\(^{210}\text{Pb} \) “surface events”

- betas and \(^{206}\text{Pb} \) nuclei from \(^{210}\text{Pb} \) decay chain
- events are located on detector face and sidewall \textit{surfaces} from \(^{222}\text{Rn} \) contamination

External gammas

- from radioactivity in shielding and cryostat

Internal activation lines

- L-shell capture from \(^{68,71}\text{Ge}, \, ^{65}\text{Zn}, \, ^{68}\text{Ga} \)
Dominant Backgrounds at Low Energy

210Pb “surface events”

- betas and 206Pb nuclei from 210Pb decay chain
- events are located on detector face and sidewall surfaces from 222Rn contamination

External gammas

- from radioactivity in shielding and cryostat

Internal activation lines

- L-shell capture from 68,71Ge, 65Zn, 68Ga

Copper housings

Detectors
Discriminators

ionization yield + total phonon energy

phonon “r-partition”

phonon “z-partition”

Bulk electron recoils

Low energy sidewall events

Low energy surface events

external gammas
approx. signal region
simulation

ionization energy [keV]

phonon energy [keV]

sidewall event

surface event

side-summed phonons

outer phonon channels
Boosted Decision Tree

Background model: pulse simulation

Signal model: ^{252}Cf NR events reweighted to match 5, 7, 10, and 15 GeV WIMP

Construction: 1 BDT per detector

Optimization: set cuts simultaneously to minimize expected 90% CL upper limit on WIMP-nucleon cross section

10 GeV WIMP

$\sigma = 6 \times 10^{-42} \text{ cm}^2$
Boosted Decision Tree

BDT inputs

- **Background model:** pulse simulation
- **Signal model:** ^{252}Cf NR events reweighted to match 5, 7, 10, and 15 GeV WIMP

BDT outputs

- **Construction:** 1 BDT per detector
- **Optimization:** set cuts simultaneously to minimize expected 90% CL upper limit on WIMP-nucleon cross section.
Unblinding: After BDT

11 events observed passing BDT (expected $6.2^{+1.1}_{-0.8}$)

95% CL contours for 5, 7, 10, 15 GeV WIMP
set 90% CL upper limit with optimal interval method (no background subtraction)

band includes systematics from efficiency, energy scale, trigger efficiency

this work

expected sensitivity

difference due to high-energy events on T5Z3

arXiv:1402.7137
Post-Unblinding Follow Up

- Background model **accurate in full preselection region**

- Shorted ionization guard on T5Z3 may have affected background model performance (p-value is 0.04%)

- Now calibrating detector response to sidewall events with sidewall 210Pb source
Two Approaches

1.) Improve exposure and background ID: **Low-energy analysis of SuperCDMS data**

2.) Lower energy threshold: **CDMSlite**
CDMSlite: “low ionization threshold experiment”

\[E_{\text{total}} = E_{\text{recoil}} + E_{\text{luke}} \]
\[= E_{\text{recoil}} + \frac{1}{3 \text{eV}} E_{\text{q}} \Delta V \]

- Measure charge with phonons, and increase voltage to amplify signal
- Lose background discrimination, but achieve lower ionization energy threshold
CDMSlite: Run 1

- Acquired 6 kg-d of exposure on detector with best combination of breakdown voltage and threshold
- Ionization energy calibration with EC lines at 1.3 keVee and 10.4 keVee
- Operated stably at 69V or 24x amplification (only 12x due to electronics limitations)
- 860 eVnr => 170 eVee threshold
- **Must assume NR energy scale**

![Recoil energy spectrum of WIMP-search events, after application of event-selection cuts. Inset: Low-energy sp](image)
CDMSlite: Run 1 Results
CDMSlite: Run 2 Outlook

<table>
<thead>
<tr>
<th></th>
<th>Run 2</th>
<th>Run 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw exposure</td>
<td>4 months</td>
<td>15 days</td>
</tr>
<tr>
<td>baseline noise</td>
<td>8.3 eVee</td>
<td>13.3 eVee</td>
</tr>
<tr>
<td>resolution @ 1.3 eVee</td>
<td>30 eVee</td>
<td>50 eVee</td>
</tr>
<tr>
<td>threshold</td>
<td>80 eVee (preliminary)</td>
<td>170 eVee</td>
</tr>
<tr>
<td>background discrimination</td>
<td>reject sidewall surface events</td>
<td>none</td>
</tr>
</tbody>
</table>

Backgrounds for low-threshold analysis also affect CDMSlite

CDMSlite can also use radial phonon info to reject backgrounds!
Conclusion

• Limits from low-energy analysis and CDMSlite significantly constrain low-mass anomalies

• First science results from SuperCDMS iZIP detectors

• Major improvements to CDMSlite performance and analysis will significantly improve future sensitivity

• Better simulations and sidewall event calibration will improve understanding of systematics at low energies

• 2.5 years of data from SuperCDMS at Soudan: more limits soon!
Acknowledgments

*Emeritus Professor at U.C. Santa Barbara
Backup
Cut Optimization

- 1 BDT classifier per detector
- Each detector has a BDT cut that has to be optimized
- Set detector BDT cuts simultaneously to minimize expected 90% CL upper limit on WIMP nucleon cross section
- Final cut is the logical OR of all the BDT cuts optimized for WIMPs of 5, 7, 10, and 15 GeV
Calibration and Energy Scale

\[E_t = E_r + E_L \]

\[E_r = E_t - \frac{1}{3\text{eV}} E_Q(E_t)\Delta V \]

- Since signal-to-noise is poor, fit mean ionization energy for nuclear recoils
- Systematic uncertainties propagated into final limit
- Most detectors consistent with or slightly below Lindhard

252Cf calibration data

\[V_b \]

Charge model for T2Z2

\[E_r = E_t - \frac{1}{3\text{eV}} E_Q(E_t)\Delta V \]
Efficiencies by Detector

Lindhard nuclear-recoil energy [keVnr]

Efficiency

Total phonon energy [keV]

T1Z1
T2Z1
T2Z2
T4Z2
T4Z3
T5Z2
T5Z3
Detector Pulse Simulation

High-E events as templates for low-E events: preserves pulse shape info

\[
\begin{array}{|c|c|}
\hline
\text{background type} & \text{template source} \\
\hline
^{210}\text{WIMP-search data} & (\sim 40-100 \text{ keV}) \\
\hline
\text{External gammas} & ^{133}\text{ (\sim 100 \text{ keV})} \\
\hline
\text{L-shell lines} & \text{K-shell decays} \\
(\sim 1 \text{ keVee}) & (\sim 10 \text{ keVee}) \\
\hline
\end{array}
\]
Electric Field in T5Z3

Electric Field & Potential for $Q_{in} = +/- 2 \, V$ and $Q_{out} = 2 / 0$

outer event can look like inner!
BDT Distributions

5 GeV

- Data
- WIMP
- Sidewall 206Pb
- Sidewall 210Pb+210Bi
- Face 210Pb+210Bi
- 1.3 keV line
- Comptons

p-value = 0.21

10 GeV

- Data
- WIMP
- Sidewall 206Pb
- Sidewall 210Pb+210Bi
- Face 210Pb+210Bi
- 1.3 keV line
- Comptons

p-value = 0.26

7 GeV

- Data
- WIMP
- Sidewall 206Pb
- Sidewall 210Pb+210Bi
- Face 210Pb+210Bi
- 1.3 keV line
- Comptons

p-value = 0.14

15 GeV

- Data
- WIMP
- Sidewall 206Pb
- Sidewall 210Pb+210Bi
- Face 210Pb+210Bi
- 1.3 keV line
- Comptons

p-value = 0.08
BDT Input Distributions
CDMSlite: Effect of Nuclear Recoil Energy Scale

![Graph showing nuclear recoil energy scale effects.]

- The results of the CDMSlite project are shown, focusing on the effect of nuclear recoil energy scale.
- Various models, including Collar and Lindhard, are compared and analyzed for their impact on the derived limits.
- The systematic uncertainty in yield does not significantly affect the derived limits.
- The analysis threshold corresponds to 0.75 keV, which improves the sensitivity to light WIMPs.
- The substantial reduction in background levels allows for more detailed analysis and improved constraints on WIMP properties.
- The iZIP detectors are fabricated in the Minnesota Department of Natural Resources, contributing to the research.

Reference:

Selection Criteria and Efficiencies

Quality
- Remove periods of poor detector performance
- Remove misreconstructed and noisy pulses
- Measure efficiency with pulse Monte Carlo

Thresholds
- Trigger and analysis thresholds 1.6-5 keVnr
- Measure efficiency using 133Ba calibration data

Preselection
- Ionization consistent with nuclear recoils
- Ionization-based fiducialization
- Remove multiple-detector hits
- Remove events coincident with muon veto

BDT
- Optimized cut on energy and phonon position estimators
- Estimate BDT+preselection efficiency using fraction of 252Cf passing

Includes ~20% correction, from Geant4 simulation, for multiple scattering in single detector
Follow-Up Studies

- Validation and refinement of background models on unblinded data
- Investigating full detector simulation as replacement for pulse simulation
- Calibrate detector response to sidewall events with sidewall ^{210}Pb source
- Use calibration to validate modeling of detectors with shorted channels (e.g. T5Z3)
- Follow-up likelihood analysis to incorporate improved simulations