Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess

Asher Berlin

In collaboration with Pierre Gratia, Dan Hooper, and Sam McDermott

See also:
1405.0272, 1404.6528, 1404.4977

COSMO’14
15-40 GeV Dark Matter… What about LUX?

\[
\sigma_{\text{SI nucleon}} (\text{cm}^2) = 5 \times 10^{-45}
\]

\[
\sigma_{\text{SI nucleon}} (\text{cm}^2) = 4 \times 10^{-45}
\]

\[
\sigma_{\text{SI nucleon}} (\text{cm}^2) = 3 \times 10^{-45}
\]

\[
\sigma_{\text{SI nucleon}} (\text{cm}^2) = 2 \times 10^{-45}
\]

\[
\sigma_{\text{SI nucleon}} (\text{cm}^2) = 1 \times 10^{-45}
\]

\[
m_{\chi} [\text{GeV}]
\]

LUX
15-40 GeV Dark Matter… What about LUX?
An Easy Way Out
An Easy Way Out

- DM annihilates to pair of on-shell intermediate states.
An Easy Way Out

- DM annihilates to pair of on-shell intermediate states.
- Intermediate states have small mixing, but large branching fraction to SM states.
An Easy Way Out

- DM annihilates to pair of on-shell intermediate states.
- Intermediate states have small mixing, but large branching fraction to SM states.
- The decay of the intermediate states to SM fermions yields a photon-spectrum. These cascade decays result in a somewhat different fit to the GC excess.
An Easy Way Out

- DM annihilates to pair of on-shell intermediate states.
- Intermediate states have small mixing, but large branching fraction to SM states.
- The decay of the intermediate states to SM fermions yields a photon-spectrum. These cascade decays result in a somewhat different fit to the GC excess.
- Nucleon scattering is suppressed, but annihilation is unsuppressed.
A Generic Example
Generic Example:

\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \]
In general, for arbitrary $2m_X > m_{\phi_1} + m_{\phi_2}$, ϕ_1 and ϕ_2 are boosted.
Generic Example: \(XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \)

- In general, for arbitrary \(2m_X > m_{\phi_1} + m_{\phi_2}, \phi_1 \) and \(\phi_2 \) are boosted.

- This changes the resulting photon spectrum, and hence the best fit to the GC.
In general, for arbitrary \(2m_X > m_{\phi_1} + m_{\phi_2}\), \(\phi_1\) and \(\phi_2\) are boosted.

This changes the resulting photon spectrum, and hence the best fit to the GC.

Compared to direct annihilations, cascade annihilations prefer DM masses about twice as large.
Generic Example:

$XX \rightarrow \phi \phi \rightarrow 4b$

$E_\gamma^2 dN_{\gamma}/dE_\gamma$ [GeV2/cm2/s/sr]

E_γ [GeV]

$m_X = 70$ GeV, $m_\phi = 70$ GeV

$m_X = 70$ GeV, $m_\phi = 10$ GeV

$m_X = 70$ GeV, $m_\phi = 40$ GeV
Generic Example:
$XX \rightarrow \phi_1 \phi_2 \rightarrow 4b$

$XX \rightarrow \phi_1 \phi_2 \rightarrow 4b$, $m_X = 72$ GeV
Generic Example:
\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \]

\(\phi \)'s produced at rest

\(m_X = 72 \) GeV

\[m_{\phi_1} [\text{GeV}] \]

\[m_{\phi_2} [\text{GeV}] \]
Generic Example:

\(XX \rightarrow \phi_1 \phi_2 \rightarrow 4b\)
Generic Example: \(XX \rightarrow \phi_1 \phi_2 \rightarrow 4b\)

\(\phi_1\)'s produced at rest

Combined \(\phi\) and \(b\) boost

\(b\)'s produced at rest

\(XX \rightarrow \phi_1 \phi_2 \rightarrow 4b, m_X = 72\, \text{GeV}\)
Generic Example:

XX → φ₁φ₂ → 4b

- φ’s produced at rest
- m_X = 60-80 GeV is “good” fit
- Combined φ and b boost
- b’s produced at rest

\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b, \quad m_X = 72 \text{ GeV} \]
Generic Example:

\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \]
Generic Example:

XX → φ₁φ₂ → 4b

Similar to direct annihilations, need \(\sigma v \sim 2 \times 10^{-26} \text{ cm}^3/\text{s} \).
Generic Example:
\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \]

- Similar to direct annihilations, need \(\sigma \nu \sim 2 \times 10^{-26} \text{ cm}^3/\text{s} \).

- Power (via annihilations) goes as \(\sigma \nu/\text{m}_x \).
Generic Example:
\[\text{XX} \rightarrow \phi_1 \phi_2 \rightarrow 4b \]

- Similar to direct annihilations, need \(\sigma v \sim 2 \times 10^{-26} \text{ cm}^3/\text{s} \).

- Power (via annihilations) goes as \(\sigma v/m_x \).

- Hence, reduced intensity for the best-fit cascade annihilations.
Generic Example:

\[XX \rightarrow \phi_1 \phi_2 \rightarrow 4b \]

- Similar to direct annihilations, need \(\sigma v \sim 2 \times 10^{-26} \text{ cm}^3/\text{s} \).
- Power (via annihilations) goes as \(\sigma v / m_x \).
- Hence, reduced intensity for the best-fit cascade annihilations.
- Also, best-fit cascade annihilations occur usually when \(m_x \sim m_\phi \).
Generic Example:

XX \rightarrow \phi_1 \phi_2 \rightarrow 4b

- Similar to direct annihilations, need $\sigma v \sim 2 \times 10^{-26}$ cm3/s.

- Power (via annihilations) goes as $\sigma v / m_x$.

- Hence, reduced intensity for the best-fit cascade annihilations.

- Also, best-fit cascade annihilations occur usually when $m_x \sim m_\phi$.

- This suppresses σv (today) relative to σv (at freeze-out). However, with a mass splitting of order 5%, σv (today) only suppressed by a few percent.
Similar to direct annihilations, need $\sigma v \sim 2 \times 10^{-26}$ cm3/s.

Power (via annihilations) goes as $\sigma v/m_x$.

Hence, reduced intensity for the best-fit cascade annihilations.

Also, best-fit cascade annihilations occur usually when $m_x \sim m_\phi$.

This suppresses σv (today) relative to σv (at freeze-out). However, with a mass splitting of order 5%, σv (today) only suppressed by a few percent.

All these factors produce tension in the normalization of the signal, but can be compensated by adjusting mass of Milky way profile (which is uncertain by O(1) factor).
An Actual Model
Dark Photon
Dark Photon

- Dirac fermion X, charged under $U(1)_x$
Dark Photon

- Dirac fermion X, charged under $U(1)_x$
- $U(1)_x$ broken \Rightarrow massive dark photon ϕ, such that $m_\phi > 10$ GeV
Dirac fermion X, charged under $U(1)_x$

$U(1)_x$ broken \Rightarrow massive dark photon ϕ, such that $m_\phi > 10$ GeV

If $m_\phi < m_x$, then $XX \rightarrow \phi\phi$
Dark Photon

- Dirac fermion X, charged under $U(1)_x$
- $U(1)_x$ broken \Rightarrow massive dark photon ϕ, such that $m_\phi > 10 \text{ GeV}$
- If $m_\phi < m_X$, then $XX \rightarrow \phi\phi$
- If ϕ has small kinetic mixing with photon, then ϕ predominantly decays to SM fermions.

\[\mathcal{L} = \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu} \]
Dirac fermion X, charged under $U(1)_x$

$U(1)_x$ broken \Rightarrow massive dark photon ϕ, such that $m_\phi > 10$ GeV

If $m_\phi < m_x$, then $XX \rightarrow \phi \phi$

If ϕ has small kinetic mixing with photon, then ϕ predominantly decays to SM fermions.

$$\mathcal{L} = \frac{1}{2} \epsilon F'_\mu \nu F^{\mu \nu}$$
- Dirac fermion X, charged under $U(1)_x$
- $U(1)_x$ broken \Rightarrow massive dark photon ϕ, such that $m_\phi > 10$ GeV
- If $m_\phi < m_x$, then $XX \rightarrow \phi\phi$
- If ϕ has small kinetic mixing with photon, then ϕ predominantly decays to SM fermions.

$$\mathcal{L} = \frac{1}{2} \epsilon F'_{\mu\nu} F^{\mu\nu}$$

Naturally, $\sim 10^{-4}$, avoiding limits from LUX
Dark Photon

\[m_x \text{ [GeV]} \]

\[m_\phi \text{ [GeV]} \]
Thank you
Backup Slides
Neutralino LSP, which is dominantly singlino-like.

If \(m_{h_s} + m_{a_s} < 2m_\chi \), then \(\chi\chi \rightarrow h_s a_s \).

If light singlet-like Higgses have small mass mixing with MSSM Higgses, then they predominantly decay to SM fermions.

\[
W^{\text{Higgs}} = (\mu + \lambda S) \hat{H}_u \hat{H}_d + \xi_F \hat{S} + \frac{1}{2} \mu' \hat{S}^2 + \frac{1}{3} \kappa \hat{S}^3
\]

\(\sim 10^{-4} \), avoiding limits from LUX.
NMSSM

NMSSM, $m_\chi = 67$ GeV, tan$\beta = 5$