Rescuing Light Moduli Cosmology from Indirect Searches

Nikita Blinov1,2, David Morrissey1, Jonathan Kozaczuk1, Arjun Menon3

1TRIUMF, Vancouver BC
2University of British Columbia, Vancouver BC
3University of Oregon, Eugene OR

August 26, 2014
COSMO 2014

Based on hep-ph:1409.soon
The Moduli Problem and Reheating

- Scalars (moduli) with M_{Pl}^{-1} suppressed interactions ubiquitous in string theory
- **At least one modulus with** $m_\phi \approx m_{3/2} \leftarrow$ SUSY breaking scale
- Coherent oscillations of ϕ store energy, dominate energy content of the universe
- ϕ decays when $\Gamma_\phi \approx H$ and reheats the universe at $T = T_{RH}$

$$T_{RH} \approx 5.5 \text{ MeV} \left(\frac{m_\phi}{100 \text{ TeV}} \right)^{3/2}, \text{ BBN } \Rightarrow \ T_{RH} \geq 5 \text{ MeV}$$

- If all superpartners at $m_{3/2} \sim m_\phi \gtrsim 100 \text{ TeV}$, bleak prospects for SUSY discovery at LHC
A Solution: Anomaly Mediation and Wino DM

Split spectrum predicted by Anomaly Mediated Supersymmetry Breaking (AMSB)

\[m_\lambda \sim \text{(loop factor)} \times m_{3/2}, \quad m_f \sim m_{3/2} \]

- Gauginos can be light, despite \(m_{3/2} \gtrsim 100 \text{ TeV} \)
- For SM \(M_1 : M_2 : M_3 \approx 7 : 1 : 3 \Rightarrow \text{Wino LSP} \)

Wino DM

- Very efficient annihilation:

\[\langle \sigma v \rangle \approx 4 \times 10^{-24} \text{ cm}^3/\text{s} \left(\frac{100 \text{ GeV}}{m_{\tilde{W}}} \right)^2 \]

Thermal relic density too small for

\[m_{\tilde{W}} < 2.8 \text{ TeV!} \]
Non-thermal Wino Dark Matter

Sub TeV wino produced non-thermally by moduli decays

$$\Omega_{\tilde{W}} \approx \left(\frac{m_{\tilde{W}}}{20}\right) \frac{\Omega_{\text{f.o.}}}{T_{\text{RH}}}$$

$m_{\tilde{W}} = 1000$ GeV, $T_{\text{RH}} = 38$ MeV

Non-Thermal Abundance $\Omega_{\tilde{W}} h^2$
Constraints from Indirect Detection

- Large annihilation cross-section to γ lines & continuum γs

\[\tilde{W} \rightarrow W^\pm \rightarrow W^\pm \rightarrow \gamma, \gamma, Z \]

- Large expected signal from galactic center

- HESS and Fermi-LAT put bounds on line fluxes

- $2\langle \sigma v \rangle_{\gamma\gamma} + \langle \sigma v \rangle_{Z\gamma}$
 - Fermi (Einasto)
 - Fermi (NFW)
 - HESS (Einasto)

H.E.S.S. (2013) and Fermi-LAT (2013)

Fan and Reece (2013) and Cohen, Lisanti, Pierce and Slatyer (2013)
Implications for Scale of SUSY Breaking

- ID constraints limit \tilde{W} abundance $\Leftrightarrow T_{RH} \Leftrightarrow m_\phi$!
 \[\Omega_{\tilde{W}} \approx \frac{(m_{\tilde{W}}/20)}{T_{RH}} \Omega_{\text{f.o.}} \]

- In the MSSM this requires
 \[m_\phi / m_{3/2} \gtrsim 100 \]
 contrary to the generic expectation
 \[m_\phi \sim m_{3/2} \approx 360 m_{\tilde{W}} \]

Fan and Reece (2013)
Cohen, Lisanti, Pierce and Slatyer (2013)
Ways Out?

If we want superpartners at LHC with AMSB-like spectrum, must suppress Wino abundance or annihilations into photons

Options:

1. **Light hidden sector (HS) with the real LSP:** $\tilde{W} \rightarrow \chi_1^x + \ldots$
 - No direct annihilation into SM

2. **Asymmetric DM**
 - Annihilations suppressed by small anti-DM density

3. **R-parity violation:** $\tilde{W} \rightarrow \text{SM} + \overline{\text{SM}}$

4. ???
$U(1)_x$ Hidden Sector

Additional spontaneously broken $U(1)_x$ kinetically mixed with $U(1)_Y$

$$W = W_{\text{MSSM}} + \mu' H H^c; \quad \mathcal{L} \supset \frac{\epsilon}{2} \int d^2 \theta X^\alpha B_{\alpha}$$

HS Neutralino, χ_1^x can be lighter than \tilde{W} and allows for $\tilde{W} \rightarrow X_\mu \chi_1^x$

- χ_1^x annihilates directly to HS
- Non-thermal WIMP miracle can be realized with χ_1^x
- On-shell annihilation products decay into SM

$$\Gamma(X \rightarrow \overline{\text{SM}} \text{ SM}) \propto \frac{1}{3} \alpha \epsilon^2 m_x$$
Indirect Detection and Cosmology Constraints

- SM decay products generally produce HE photons from hadronization and radiation

- γ lines also possible, but the rate is negligible

- Annihilations during recombination at $z \sim 1000$ distorts surface of last scattering

Asymmetric Dark Matter solves the late-time annihilation problem, while allowing \tilde{W} decay into the HS

- Dirac fermion or complex scalar Y with $n_Y \gg n_{\bar{Y}}$ at late times
 - Kaplan, Luty, & Zurek (2009)

- Efficient annihilation required to deplete $n_{\bar{Y}}$
 \[
 \langle \sigma v \rangle \gg 3 \times 10^{-26} \text{ cm}^3/\text{s}
 \]

- Light mediators needed \Rightarrow reuse the $U(1)_x$ HS

\[g_x = 0.2, \mu_Y = 2 \text{ GeV}, T_{R_H} = 20 \text{ MeV}\]
Challenges for ADM+ $U(1)_x$

1. Annihilation is not fully efficient, some anti-DM remains:
 - Energy injection during recombination \Rightarrow CMB constraints
 - Indirect detection

2. A light mediator \Rightarrow Spin-independent scattering off nuclei

$$\tilde{\sigma}_n \approx 2 \times 10^{-38} \text{ cm}^2 \left(\frac{\epsilon}{10^{-3}} \right)^2 \left(\frac{g_x}{0.1} \right)^2 \left(\frac{\mu_n}{1 \text{ GeV}} \right)^2 \left(\frac{1 \text{ GeV}}{m_x} \right)^4.$$

Note: ϵ cannot be arbitrarily small - \tilde{W} must decay before BBN, maintain kinetic equilibrium between HS and MSSM
ADM Works!

\[\Omega_{\text{adm}}/\Omega_{\text{cdm}} \text{ for } g_x = 0.1 \text{ and } \epsilon = 10^{-4} \]

\[\Omega_{\text{adm}}/\Omega_{\text{cdm}} \text{ for } \kappa = 5 \times 10^{-3} \text{ and } \epsilon = 10^{-4} \]
An Abelian HS (with or without ADM) can solve the moduli induced MSSM (Wino) LSP problem (or at least relieve tension with ID)

Both cases considered require light $\sim \text{GeV}$ scale scalars

e.g. light HS vector needs a Higgs with a $O(\text{GeV})$ VEV

LHC null searches imply a split spectrum (heavy scalars) in the visible sector

Is there a viable solution with split hidden sector?
Pure $U(1)_x$ does not work: HS neutralino cannot annihilate (no coupling to gauge bosons!)

∴ Consider a hidden $SU(N)_x$

Feng and Shadmi (2011)
Boddy, Feng, Kaplinghat and Tait (2014)

- Spectrum contains $N^2 - 1$ (unconfined) massless gluons and massive gluinos (DM)

$$M_x = r_x \frac{g^2_x}{(4\pi)^2} m_{3/2},$$

- MSSM LSP must decay to HS via high-dimension operators
 ⇒ matter charged under SM gauge group and $SU(N)_x$ at some high scale

- Two sectors never thermalize: HS gluons another radiation bath and set of massless d.o.f.s
Constraints on $SU(N)_x$

- HS gluons another set of massless d.o.f.s

$$\Delta N_{\text{eff}} \simeq \left(\frac{4}{7}\right) (N^2 - 1) \left(\frac{c_x}{c_v}\right), \Delta N_{\text{eff}} \lesssim 1.0$$

$c_i = \text{modulus branching fraction.}$

- HS gluinos remain kinetically coupled to the HS gluon bath (even today!)

Dark acoustic oscillations can leave imprint on galaxy distributions and CMB
At most 5% of DM can strongly interact with dark radiation

Cyr-Racine, de Putter, Raccanelli and Sigurdson (2013)

HS gluinos cannot make up all of DM
HS Gluino Abundance

\[\Omega_{\tilde{G}_x}/\Omega_{\text{cdm}} \]

\[m_\varphi = m_{3/2}, \ c = 1, \ c_x/c_v = 1/199 \]

\[T_{\text{RH}}^x > T_{\text{fo}} \]: thermal production \(\Omega_{\tilde{G}_x} \sim \text{const} \)

\[T_{\text{RH}}^x \sim T_{\text{fo}} \]: thermal production (non RD universe) \(\Omega_{\tilde{G}_x} \sim M_x^{-3} \propto g_x^{-6} \)

\[T_{\text{RH}}^x < T_{\text{fo}} \]: non-thermal production with reannihilation \(\Omega_{\tilde{G}_x} \sim M_x \propto g_x^2 \)
Conclusions

- Non-thermal WIMP miracle with small T_{RH} (i.e. low $m_{3/2}$) is extremely constrained

 Low $T_{RH} \Rightarrow$ large annihilation rate needed \Rightarrow High ID rate (if annihilation products are/decay down to SM)

- New gauge sectors can solve the moduli induced LSP problem (with a bit of work), while maintaining collider accessible MSSM gauginos

- Other possibilities: e.g. R-parity violation with axion DM

Thank you!
Backup
Boltzmann equations for moduli reheating and self-conjugate DM production:

\[
\frac{d\rho_\varphi}{dt} = -3H\rho_\varphi - \Gamma_\varphi \rho_\varphi \\
\frac{d\rho_R}{dt} = -3H(\rho_R + p_R) + \Gamma_\varphi \rho_\varphi \\
\frac{dn_\chi}{dt} = -3Hn_\chi \frac{N_\chi \Gamma_\varphi}{m_\varphi} \rho_\varphi - \langle \sigma v \rangle (n_\chi^2 - n_{eq}^2)
\]

For ADM, asymmetry generation is modelled by

\[
\frac{dn_{\Psi, \overline{\Psi}}}{dt} + 3Hn_\Psi = (1 \pm \kappa/2) \frac{N_\Psi \Gamma_\varphi}{m_\varphi} \rho_\varphi + \ldots
\]
The hidden gluino soft mass is

\[M_x = r_x \frac{g_x^2}{(4\pi)^2} m_3/2 , \]

\[r_x = 3N \text{ for pure AMSB.} \]

Confining transition at \(\Lambda_x \) to a theory of massive glueball (and glueballino) bound states.

\[\Lambda_x = M_x \exp \left(-\frac{3r_x m_{3/2}}{22N M_x} \right) . \]

For \(M_x < 1000 \text{ GeV} \), \(r_x = 3N \), and that \(M_x < M_2 \), \(\Lambda_x < 10^{-61} \text{ GeV} \).
Connectors to the MSSM

Decay of lightest MSSM superpartner requires matter charged under both MSSM and $SU(N)_x$. For example:

\[W \supset \lambda_u H_u FP + \lambda_d H_d F^c P^c + \mu_F FF^c + \mu_P PP^c . \]

\[
\Gamma \simeq (1 \times 10^{-6} \text{ s})^{-1} (N^2 - 1) N_F^2 \left| N_{13} \right|^2 \\
\times \left(\frac{\alpha_x}{10^{-3}} \right)^2 \left(\frac{\lambda_u}{0.75} \right)^4 \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}} \right)^3 \left(\frac{100 \text{ TeV}}{\mu_F} \right)^4
\]