

Matter Power Spectrum Covariance Matrix from the DEUS PUR ACDM simulations

Mass Resolution and non-Gaussian Errors arxiv:1406.2713

Linda Blot

in collaboration with:
Pier Stefano Corasaniti, Jean-Michel Alimi, Vincent Reverdy, Yann Rasera

LSS Surveys

Claim: 1% accuracy on matter power spectrum over large range of scales Competitive with CMB to constrain cosmological parameters values

LSS Surveys and Dark Energy

What is Dark Energy?

Dark Energy dominates at late times

Need simulations to make accurate predictions

DEUS Full Universe Run

AMADEUS application:

- IC: optimised version of MPGRAFIC (Prunet 2008)
- N-body: improved version of RAMSES (Teyssier 2002)
- Halo finder: PFOF (Roy et al. 2014)

Some numbers:

- · 21 Gpc/h box-side
- 8192³ particles
- 2 trillions AMR cells
- 5 million cpu hours on 76032 cores of the Curie Supercomputer at TGCC
- Resolves scales from the size of the horizon to the Milky Way size (40 kpc/h)

Alimi et al. 2012, arxiv:1206.2838

DEUS Full Universe Run

3 Dark Energy cosmologies:

WMAP-7 \(\text{CDM} \) (x)

w=-0.87 \(\text{Ratra-Peebles CDM} \) (+)

w=-1.2 \(\text{phantom fluid dark energy CDM} \) (o)

Black: WMAP-7 Color: SN Ia UNION

BAO from DEUS FUR

Sampling: $\Delta k = 2\pi/L_{box}$

BAO from DEUS FUR

Sampling: $\Delta k = 2\pi/L_{box}$

DEUS Parallel Universe Runs

Set C

Set A

Set B

WMAP-7 ACDM

For comparison:
Takahashi et al. 2009
5000 PM simulations 1 Gpc/h 256³ particles
Li et al. 2014b
3584 Tree-PM simulations 500 Mpc/h 256³
particles

Matter Power Spectrum Variance

$$\sigma^2 = \frac{1}{N_s - 1} \sum_{i=1}^{N_s} (P_i(k) - \bar{P}(k))^2$$

Blot et al. 2014, arxiv:1406.2713

Mass Resolution Effect Correction

Map the spectrum from the PDF of set A into the one of set B using only the first two moments

$$\hat{P}_A^{\text{corr}}(k) = \left[\hat{P}_A(k) - \bar{P}_A(k)\right] \frac{\sigma_{\hat{P}_B}(k)}{\sigma_{\hat{P}_A}(k)} + \bar{P}_B(k)$$

Corrected Matter Power Spectrum Variance

Correlation Matrix

$$r(k_1, k_2) = \frac{\text{cov}(k_1, k_2)}{\sqrt{\text{cov}(k_1, k_1) \text{cov}(k_2, k_2)}}$$

PDF of the Matter Power Spectrum

 χ^2 distribution with N_k d.o.f. \rightarrow Gaussian for N_k>> 1

Conclusions

- Simulations are not exempt from systematic uncertainties: mass resolution, finite volume
- Empirical method to correct for mass resolution effect
- Previous studies with less simulations found no evidences of PDF deviations from Gaussianity -> need very large number of simulations
- Non-Gaussianities play an important role from k~0.2 h/Mpc up
- Minor importance for BAO but need full PDF for smaller scales

Backup

Covariance matrices: from observations to constraints on cosmological parameters

Physical + statistical properties of the models -> differentiation of models in bayesian framework

Ideal world: full multivariate probability distribution of the data for all the models

If we assume multivariate Gaussian -> mean and covariance

Estimation of the covariance:

- internal: from the data themselves
- external: from simulations
- model: from the theoretical model

Sample covariance

$$\widehat{\text{cov}}(k_1, k_2) = \frac{1}{N_s - 1} \sum_{i=1}^{N_s} [\hat{P}_i(k_1) - \bar{P}(k_1)] [\hat{P}_i(k_2) - \bar{P}(k_2)]$$

LSS: non-linear regime, bias + complicated data processing -> simulations

Signal to Noise

$$\left(\frac{S}{N}\right)^2 = \sum_{k_1, k_2 < k_{\text{max}}} P(k_1) \operatorname{cov}^{-1}(k_1, k_2) P(k_2)$$

Mass Resolution Effect

Rasera et al. 2014

Heitmann et al. 2010