Combining Probes in the Dark Energy Survey

Theory & Combined Probes Working Group

Youngsoo Park*#, Tommaso Giannantonio, Pablo Fosalba, Elisabeth Krause, Alex Saro, Ross Cawthon, Flavia Sobreira*, Joseph Clampitt, Vinu Vikram, Carles Sanchez, Vikram Upadhyay, Boris Leistedt*, SD, Jochen Weller, Tim Eifler, Bhuv Jain, Brad Benson*, Hiranya Peiris*, Enrique Gaztanaga, Martin Crocce, Rob Crittenden, Huan Lin, Eduardo Rozo, Eli Rykoff, ...

Cosmological Survey Inference System (CosmoSIS)

Joe Zuntz, Marc Paterno, Elise Jennings*, Alessandro Manzotti*, Doug Rudd, SD, Sarah Bridle, Jim Kowalkowski, Saba Sehrish

4 Independent probes plus uncorrelated CMB \rightarrow Constraints on w

Supernova **Brightness**

Baryon Acoustic Oscillations

Gravitational Lensing

Galaxy Cluster Abundance

Sunyaev-Zel'dovich Effect

- Eew hundred stacked clusters (516 total) from DES Science Verification data
- Sensitive to pressure profile, which in turn depends on mass

- Stacked clusters (516 total) binned in richness
- SZ signal grows with richness
- Multi-wavelength approach to beat down cluster systematics associated with mass observable

- Stacked clusters (516 total) binned in richness
- SZ signal grows with richness
- Multi-wavelength approach to beat down cluster systematics associated with mass observable

Lensing of the CMB by Large Scale Structure

Will teach us about galaxy bias

DES\CMB	к Мар	Temperature	SZ Source Profile	Lensing of Dipole
Galaxy Map	Galaxy over- density and CMB kappa map	ISW and Diffuse SZ	LRGClustersGalaxies in SPT Selected Clusters	Clusters
Shear Map	DES cosmic shear with CMB kappa map	Might pick up ISW and Diffuse SZ	This would probe <phi x<br="">Pressure></phi>	Might be interesting to think about this
Tangential Shear [g-g lensing; cluster lensing]	Might be interesting to do "CMB kappa"-lensing	Probes <\Delta\Sigma x Pressure>	Cluster lensing of SZ- detected clusters:	

- Simply multiplying likelihoods is incorrect: all probes are correlated with one another
- Canonical example: Lensing and Large Scale Structure:

$$\left\langle \delta \kappa \right\rangle = \left\langle \delta_{fg} \kappa_{bg} \right\rangle + \left\langle \delta_{bg} \kappa_{fg} \right\rangle + \left\langle \delta_{bg} \kappa_{bg} \right\rangle + \left\langle \delta_{fg} \kappa_{fg} \right\rangle$$

Galaxy-galaxy lensing:

Foreground overdensity responsible for lensing of background galaxies Magnification:

Background over-density is (de-)magnified by foreground and background kappa maps

Lens-Source coupling:

Background overdensity affects background kappa mag

4 Independent probes plus uncorrelated CMB → Constraints on #= GR vs MG

Can explain acceleration without dark energy (w) by modifying GR:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [R + f(R)] + \int d^4x \sqrt{-g} L_m$$

Many ways to modify gravity to fit expansion history: *Trodden, Matas, Stefanyszyn, Park, Salgado, Erickcek, ...*

4 Independent probes plus uncorrelated CMB → Constraints on #= GR vs MG

Fix expansion history: differentiate between DE +GR and MG using growth of structure

Huterer et al. 2014

Lensing + LSS as a probe of Growth

(Yoo & Seljak; Oguri and Takada; van den Bosch, More, Cacciato, Mo, Yang)

- Use shear of background galaxies to estimate mass of foreground galaxies
- There is a theoretical prediction, calibrated off simulations, for b(M)
- Use the large scale distribution of the foreground galaxies (whose mass is now known) to infer the matter power spectrum

$$P(k,z) = \frac{P_{gg}(k,z)}{b_g^2(M)} \longrightarrow$$

Amplitude of fluctuations as a function of redshift

Lensing + LSS as a probe of Growth

Lensing + LSS as a probe of Growth

Galaxy-Galaxy Lensing: Simulations

Galaxy-Galaxy Lensing: SV Data

Galaxy Clustering Data

See Talk by Flavia Sobreira on Friday for details, further results

Preliminary Projections on Simulations

See Poster by Youngsoo Park*#

Preliminary Projections on Simulations

Aim to constrain growth at the 10% level; should get competitive constraint even with SV data

CosmoSIS: Cosmological Survey Inference System

- Designed by Theory & Combined Probes Working Group in DES to help the collaboration work together to extract tightest constrains on dark energy
- Software Framework that empowers multiple users to develop and share code, combine analyses, and produce robust cosmological parameter constraints: cosmoMC on steroids!
- Already in use in DES, but gaining traction with the broader community (breakout workshop in May; talks at DESI, LSST, FNAL Users meeting)

https://bitbucket.org/joezuntz/cosmosis/wiki/Home or contact me