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Where are quantum-classical 
boundaries in large systems? 

11

gent origin of classical locality and gravity from a Planck
scale theory.
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FIG. 1: Domains of applicability of approximations, in terms
of size and energy of a physical system. The photoelectric
relation at left relates the wavelength and energy of a single
quantum. More compact systems do not exist, since quanta
do not come in smaller packets. The Schwarzschild formula on
the right relates the radius and mass of a black hole. Again,
more compact systems do not exist, since a black hole is the
most compact configuration of space-time for a given mass.
Below these two lines, in particular in a system smaller than
the Planck length where the two lines meet, no system based
on classical dynamical geometry responding to quantum mat-
ter can exist. Above these lines, nearly-classical geometry is
a useful approximation, so systems can be approximated in
the usual way as quantum fields and particles on a classical
background. The model here predicts new residual e↵ects of
quantum geometry that persist on macroscopic length scales;
they may dominate standard quantum uncertainty for trans-
verse positions of massive bodies above the Planck mass.
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Quantum matter and quantum 
geometry

Matter is a quantum system (e.g., field theory) 

Geometry is dynamical but classical (general relativity) 

Standard approximations: ignore geometrical dynamics in small 
systems, or ignore quantum behavior in large systems 

Whole quantum system actually includes matter and  geometry  

Matter and geometry are “emergent” subsystems  

Their degrees of freedom are entangled, beyond standard theory 

Entanglement can have observable consequences on large scales
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 Standard quantum position uncertainty 
in macroscopic systems with gravity

Standard quantum kinematic uncertainty: wave function of 
position compared at two times increases with time interval, 

!

Gravity also relates mass, size and duration 

Quantum-classical boundary is macroscopic at low mass 

Gravitational atom: two bodies bound only by gravity 

Cosmic Expansion: minimum scale of classical metric 
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Although we have used Newtonian gravity to describe
the system, there is also a classical solution using relativ-
ity. The gravitational potential is replaced by a curved
space-time metric. The configuration of the potential (or
the metric) depends on the configuration of the bodies.
The metric can also be used as a basis for modeling a
quantum system.

In the quantum system, the structure and behavior of
the potential and metric have the same indeterminate
character, and the same symmetry, as the trajectories of
the bodies. The potential has the discrete spectrum of
states corresponding to energy, En = �2M4/n2, while
the curvature radius has a discrete spectrum correspond-
ing to orbital timescale,

⌧n = n2/2M4. (20)

This non-relativistic approximation is appropriate for
M << 1. (Above the Planck mass, the radius is smaller
than a black hole of the same mass.)

The atom is not analytically solvable with more than
two bodies, in either the classical or quantum systems.
However, it is clear from scaling the above arguments
that for a given total mass, the spatial size of the ground
state scales like the number of particles, so quantum ef-
fects in principle operate on even larger spatial scales.
However, the e↵ect of each particle on the potential is
less. A nearly-uniform matter distribution is considered
below, in the context of a perturbed cosmological solu-
tion without gravity; that estimate gives the same scale
of indeterminate curvature as the atom.

B. Quantum Kinematic Uncertainty of Position
Compared at Two Times

Consider now a system where gravity and other forces
can be neglected. In this case evolution is governed sim-
ply by quantum kinematics, so it can be formulated in a
general way applicable to a wide variety of systems.

As in the case of the atom, observables are represented
by operators. Components of spatial position x̂i and mo-
mentum p̂i of a system are described by conjugate oper-
ators with commutator

[x̂i, p̂i] = ih̄�ij . (21)

These operators can refer to the position and momen-
tum of a body, or to some other degrees of freedom of a
system, characterized by equations of motion.

The state of the system can be described, for exam-
ple, by a wavefunction that represents a complex ampli-
tude for any configuration, e.g.,  (xi). The wave func-
tions obey the standard Heisenberg uncertainty relation
of standard deviations, �xi�pi > h̄�ij , that follows di-
rectly from the commutator. The equations of motion
can also be used to derive other uncertainty relations
that relate wave functions of other observable quanti-
tates, such as observables at di↵erent times. These re-

lations describe the relations between preparation and
measurement.
In the force-free case (potential U = some constant),

the motion of a system of mass M is governed by sim-
ple kinematics, @x̂i/@t = p̂i/M . The standard quantum
uncertainty of position di↵erence measured at two times
separated by an interval ⌧ is then[7–9]

�xq(⌧)
2 ⌘ h(x̂(t)� x̂(t+ ⌧))2i|t > 2h̄⌧/M. (22)

It may seem surprising at first that this uncertainty
grows with time, since intuitively it seems that uncer-
tainty should get small with a longer average. The ex-
planation is that position after a long time is susceptible
to momentum uncertainty. The minimal uncertainty cor-
responds to states prepared in such a way that �xq(⌧)
gets equal uncertainty from position and momentum un-
certainty after time ⌧ . As a result, in any system that
evolves slowly and lasts a long time, the scale of quantum
uncertainty gets surprisingly large. This result approxi-
mately applies to any system over timescales short com-
pared to its natural dynamical timescale, since it assumes
only force-free kinematics (see Fig. 1) .

C. Macroscopic Quantum Trajectories

1. Bound Systems

A typical real gravitating system is composed of mas-
sive bodies whose individual wave function widths are
much smaller than the system size. The quantum ef-
fects on their orbits can then be neglected. However, an
isolated system with mass and size comparable with the
ground state of the gravitational atom, and dominated
by gravitational forces, displays quantum characteristics.
This situation could actually apply, for example, in the
real universe in deep intergalactic space, far from con-
centrations of matter. In the real universe, such systems
are also a↵ected by new physics of cosmic acceleration
or dark energy not included in this model, as discussed
below.

2. Quantum Uncertainty of Black Hole Position over an
Evaporation Time

An exotic application of these ideas is the motion of a
black hole. The center of mass should behave in the same
way as any other massive body. This illustration is in-
teresting because seemingly reasonable assumptions, for
example about locality of information, have been shown
to lead to apparent paradoxes.
Consider the motion of a black hole of mass M over

a timescale of the order of the time it takes for its
mass to evaporate by Hawking radiation, ⌧evap ⇡ M3

in Planck units. The position of the hole is indetermi-
nate by �xq(⌧) ⇡ (⌧evap/M)1/2 ⇡ M , that is, by about
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nanoscale system   
~10-7 meters
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Directional Entanglement of Quantum 
Fields with Quantum Geometry

Energy density of of quantum field states is given by the UV cutoff of 
the theory to the fourth power, independent of volume 

In a sufficiently large volume, these states are unphysical because 
they exceed the mass of a black hole of the same size 

(Extreme version of this, with Planck cutoff and Hubble volume, is the 
classic, factor of ~10122 dark energy problem) 

One proposed solution (Cohen, Kaplan, Nelson): there is a maximum 
extent of field states (IR cutoff), which depends on UV cutoff 

Can be explained by directional entanglement of fields with emergent 
geometry: angular resolution is limited by Planck diffraction (CJH)
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Standard field 
theory is valid 

here

Field theory is 
significantly entangled 

with geometry, reducing 
degrees of freedom



Entanglement connects micro scale of fields to macro scale of geometry 

Density of holographic cosmic information ~ density of QCD field information  

Standard position uncertainty of pion over a Hubble time ~ extent of QCD 
field states in entangled scenario (about 100 km) 

Dark energy in a volume of this size ~ 1 Planck mass; amount of expansion 
in this time ~ directional uncertainty~ QCD scale; effect of acceleration in 
this time ~ 1 Planck length difference  

Equipartition of information could explain well known coincidence between 
QCD scale and Hubble scale, in Planck units (eg, Zeldovich, Bjorken): 

Information budget suggests that 
emergent cosmic acceleration rate could 

be set by the QCD scale
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is determined by the lifetimes of stars, which in turn is
long because gravity is (and always has been) so weak.

The specific relation m⇡ ⇡ H
1/3
0 between the pion

mass (or strong-interaction scale) and the present Hub-
ble scale was noticed by Zeldovich[14]. Bjorken argued
further that the strong interactions may have a direct
physical relationship with the rate of cosmic accelera-
tion. That is also the point of view here, where it has
been given some physical motivation from emergent grav-
ity, and a more concrete physical interpretation: in this
scenario, there is a cosmological constant, whose value
is necessarily fixed to the microscopic scale where the
matter vacuum spontaneously condenses into massive
hadronic particles.

It is worth pointing out that in this case, one also
expects a Dicke/Carter-type coincidence of the cosmic
acceleration time with stellar lifetimes, from the astro-
physics of stars. That is, if the scale of cosmic acceler-
ation is physically connected with that of strong inter-

actions by m⇡ ⇡ H
1/3
⇤ , its timescale automatically coin-

cides with the typical lifetime of a Sun-like star. That
lifetime can be roughly estimated[15] by the time it takes
to radiate at nuclear e�ciency (about one percent of rest
mass) at solar luminosity (about one percent of Edding-
ton luminosity),

⌧star ⇡ ↵2m�1
protonm

�2
electron, (67)

where ↵ is the fine structure constant. Since this product
of constants approximately coincides with m�3

⇡ (at least

in the Standard Model), the coincidence m⇡ ⇡ H
1/3
⇤ nat-

urally implies that ⌧star ⇡ 1/H⇤.
The coincidence ⌧star ⇡ 1/H⇤ seems so unnatural from

a pure field theory perspective that Weinberg was led
to an explanation for the value of H⇤ based on a mul-

tiverse (or “strong anthropic principle”) argument, but
that appears not to be necessary in the framework of en-
tanglement sketched here. Note that the physics of star
formation and structure both scale approximately with
the Chandrasekhar mass, so basic physics also accounts
in broad terms for why the baryons of the universe tend
to form stars at all.

V. CONCLUDING REMARKS

The relationships of mass, length, and time (both du-
ration and gravitational) described here are all conse-
quences of standard quantum mechanics and gravity. Put
together, they suggest that the quantum character of ge-
ometry is important on macroscopic scales. The small-
ness of the Planck length and time leads to a tiny grav-
itational force, so that a large factor separates system
size from radius of curvature or orbital timescale. Grav-
itational systems display some quantum behaviors on
macroscopic scales that are confined to the atomic scale
for the other, stronger forces. The consequences of ge-
ometrical entanglement with matter in real systems are
subtle, but some of them may be observable, and may be
responsible for already-observed but unaccounted phe-
nomena, such as cosmic acceleration.
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 Experimental probe of Planckian 
directional entanglement

Direct laboratory measurement of gravitational 
indeterminacy or cosmic acceleration is impractical 

But interferometers may be able to measure noise from 
Planckian directional entanglement on lab scale 

An operating experiment, the Fermilab Holometer, is 
designed to measure or rule out this effect 

It has recently achieved near-Planck sensitivity 

Stay tuned for results in the next year
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