#### Fingerprints of Galactic Loop I on the Cosmic Microwave Background

Philipp Mertsch with Hao Liu & Subir Sarkar

COSMO2014

25 August 2014

Stanford University



### CMB foreground removal





#### Before and after



#### CMB contamination at high latitude?



correlation between Faraday depth and WMAP7 ILC

MC simulations: standard deviation of correlation anomalous with p-value  $< 5 \times 10^{-4}$ 

Hansen *et al.*, MNRAS **426** (2012) 57; Dineen & Coles MNRAS **347** (2004) 52

### Radio loops



- probably shells of old SNRs
- can only observe 4 (5) radio loops directly in radio maps
- total Galactic population of up to O(1000) can contribute on *all* scales



### Modelling the APS @ 408 MHz





<u>synchrotron:</u> smooth emissivity *and* turbulence

<u>free-free:</u> WMAP MEM-template

unsubtracted sources: shot noise

## Modelling individual shells

Mertsch & Sarkar, JCAP 06 (2013) 041

assumption: flux from one shell factorises into angular part and frequency part:  $J_{\text{shell }i}(\nu, \ell, b) = \varepsilon_i(\nu)g_i(\ell, b)$ 



#### frequency part $\varepsilon_i(\nu)$ :

magnetic field gets compressed in SNR shell electrons get betatron accelerated emissivity increased with respect to ISM

#### angular part $g_i(\ell, b)$ :

assume constant emissivity in thin shell:

$$a_{lm}^{i}' \sim \varepsilon_i(\nu) \int_{-1}^1 \mathrm{d}z' P_l(z') g_i(z')$$



## Modelling individual shells

Mertsch & Sarkar, JCAP 06 (2013) 041

assumption: flux from one shell factorises into angular part and frequency part:  $J_{\text{shell }i}(\nu, \ell, b) = \varepsilon_i(\nu)g_i(\ell, b)$ 



#### frequency part $\varepsilon_i(\nu)$ :

magnetic field gets compressed in SNR shell electrons get betatron accelerated emissivity increased with respect to ISM

#### angular part $g_i(\cos\psi)$ :

assume constant emissivity in thin shell:

$$a_{lm}^{i}' \sim \varepsilon_i(\nu) \int_{-1}^1 \mathrm{d}z' P_l(z') g_i(z')$$

add up contribution from all shells

$$a_{lm}^{\text{total}} = \sum_{i} a_{lm}^{i}$$



### ...including ensemble of shells





O(1000) shells of old SNRs present in Galaxy

we know 4 local shells (Loop I-IV) but others are modeled in MC approach

they contribute *exactly* in the right multipole

#### Best fit of local shells and ensemble





O(1000) shells of old SNRs present in Galaxy

we know 4 local shells (Loop I-IV) but others are modeled in MC approach

they contribute *exactly* in the right multipole



## <u>Anomalies in ILC9 (ℓ≤20)</u>



**-128** Liu, Mertsch & Sarkar, ApJL **789** (2014) 29





### Anomalies in ILC9 (ℓ≤20)





## <u>Anomalies in ILC9 (ℓ≤20)</u>



 $T(\mu K)$ 

128



### Anomalies in ILC9 (ℓ≤20)

in ring around Loop I



### Cluster analysis

Naselsky & Novikov, ApJ. **444** (1995) 1



from 100,000 MC runs: probability for smaller  $\langle G \rangle$  in last four bins  $\sim 10^{-4}$ 

# How to evade foreground cleaning:

- ILC coefficients from minimizing variance over whole sky ( $\Omega_{rest}$ )
- but Loops contribute only locally ( $\Omega_{\text{Loop I}}$ )



## ILC coefficients from Loop I region



### ILC coefficients from rest of sky







50

-50 T(μK) Liu, Mertsch & Sarkar, ApJL **789** (2014) 29

## What do we know about anomaly?

- spatially correlates with Loop I
- unlikely synchrotron (checked with our synchrotron model)
- <u>frequency dependence</u>:

which spectral index  $\beta$  gets "zeroed" by ILC method, i.e. solve  $\sum_{j=K}^{W} W_j \nu_j^{\beta} = 0$  for  $\beta$ for WMAP9:  $\beta \sim -3$ , -2 and  $1.7 \dots 1.8$ synch free-free thermal dust

for Loop region:  $\beta \sim -3$  and  $\sim 1.4$ 

## Spectral index



- WMAP polarised intensity in
  - W (60 GHz)
  - V (90 GHz)
- correlate with ILC9
- ratio of average intensities in Loop I region: 1.7
- spectral index: ~1.3



## Evidence for magnetised dust I

- correlation  $\alpha_{353}(\nu)$  of WMAP and *Planck* frequency maps with dust template (353 GHz) in intensity and polarisation
- model as
  - CMB: achromatic
  - synchrotron:  $A_s \nu^{\beta_s}$
  - thermal dust:  $A_d \nu^{\beta_d} B(\nu, T_d)$
  - AME: spinning dust
- in intensity:  $T_d\simeq 19\,{
  m K}$  and  $\beta_d\simeq 1.52$  (cf. in FIR,  $\beta_d\sim 1.7$ )
- possible interpretation: magnetised dust, BB spectrum
- →  $7\sigma$  evidence for magnetised dust?!



Ade et al., arXiv:1405.0874

## Evidence for magnetised dust II



Draine & Hensley, ApJ **757** (2012) 103

#### Magnetic dipole radiation



Draine & Lazarian, ApJ **508** (1998) 157, *ibid.*, ApJ **512** (1999) 740 Draine & Hensley, ApJ **765** (2013) 169

## Significance for cosmology

#### temperature anisotropies

- observed loops contribute mostly at  $\ell \lesssim 100$
- → no impact at large  $\ell$ ?
- low- $\ell$  anomalies (power deficit,  $\ell=2$  ,  $\ell=2,3$  alignment, parity asymmetry)
- CMB power even lower than observed?!

#### polarisation

- not a power law in  $\ell$
- dangerous frequency behaviour: BB!
- possibility of small-scale turbulence in loops → variation of polarisation fraction and angle
- none of the "dust models" covers this



#### Best fit of local shells and ensemble





O(1000) shells of old SNRs present in Galaxy

we know 4 local shells (Loop I-IV) but others are modeled in MC approach

they contribute *exactly* in the right multipole

## Significance for cosmology

#### temperature anisotropies

- observed loops contribute mostly at  $\ell \lesssim 100$
- → no impact at large  $\ell$ ?
- low- $\ell$  anomalies (power deficit,  $\ell=2$  ,  $\ell=2,3$  alignment, parity asymmetry)
- CMB power even lower than observed?!

#### polarisation

- not a power law in  $\ell$
- dangerous frequency behaviour: BB!
- possibility of small-scale turbulence in loops → variation of polarisation fraction and angle
- none of the "dust models" covers this





#### polarisation (1.4 and 23 GHz)

polarisation angle

#### BICEP2 variance-weight map & loops



### Conlcusion



<u>radioloops</u> efficiently modelled in angular power spectrum



contamination in CMB maps anomalous temperature & clustering magnetised dust?



Wolleben's "New Loop" potentially high polarisation fraction, potentially low spectral index