Spectral distortions in the cosmic microwave background polarization

Sébastien Renaux-Petel
LPTHE - IAP - ILP

COSMO 14 conference, CHICAGO, 26.08.2014
1. Spectral distortions

2. Our work

arXiv: 1312.4448 (JCAP)
SRP, C. Filder (Portsmouth), C. Pitrou (IAP), G. Pettinari (Sussex)
Cosmic Microwave Background temperature fluctuations

Planck all sky map
Cosmic Microwave Background temperature fluctuations

Planck all sky map
Cosmic Microwave Background temperature fluctuations

Something different today!

Planck all sky map
Energy dependence

• Previous picture assumed:

\[I_{BB}(E, \hat{n}) = \frac{2}{e^{\frac{E}{T(\hat{n})}} - 1} \]

• Blackbody (BB) distribution of the CMB intensity with direction-dependent temperature.

• But: no full thermodynamic equilibrium throughout the universe history

• The energy dependence is more complicated

• The temperature is not enough to characterize the CMB signal. Its spectral dependence contains another independent piece of information.
Current spectral distortions constraints

COBE/FIRAS *(Far InfraRed Absolute Spectrophotometer)*

Spectrum of the Cosmic Microwave Background

Error bars a small fraction of the line thickness!

Compton y-distortion:

$$|y| \leq 1.5 \times 10^{-5}$$

Chemical potential μ-distortion:

$$|\mu| \leq 9 \times 10^{-5}$$

Only very small distortions of the CMB spectrum are allowed.
Dramatic improvement in angular resolution and sensitivity in the past decades
Dramatic improvement in angular resolution and sensitivity in the past decades

But measurements of the CMB spectrum are in the same state as 20 years ago! Huge potential for discovery
Future expected constraints

PIXIE
arXiv:1105.2044

400 spectral channels in the frequency range 30 GHz - 6 THz
(9 for Planck)

About 1000 times more sensitive than COBE/FIRAS

Improved limits on mu and y by 3 orders of magnitude!

COrE/PRISM?
arXiv:1310.1554
Physical mechanisms that lead to spectral distortions

- Energy injection in the primordial plasma at $z < \text{few} \times 10^6$
- Heating by decaying or annihilating relic particles
- Dissipation of primordial acoustic waves (window into small scale power spectrum)
- Cosmological recombination
- SZ effect from galaxy clusters, effects of reionization

Lots of effects within the reach of future experiments

The field of CMB spectral distortions is observationally and theoretically very promising.

Les Houches lecture notes, Chluba 13

cf Daniel Grin’s talk
The field of CMB spectral distortions is still in its infancy

Most work to date concentrate on the CMB intensity, and its monopole

But future experiments will characterize the spectrum of the CMB anisotropies, both in intensity and polarization.

In 1312.4448, we computed the unavoidable spectral distortions of the CMB polarization induced by non-linear effects in the Compton interactions between CMB photons and the flow of intergalactic electrons (non-linear kinetic Sunyaev Zel’dovich)
CMB spectral distortions

\[
I(E, \hat{n}) = I_{\text{Planck}}(E; T(\hat{n})) + y(\hat{n}) \times \left(\text{Other spectral dependence} \right)
\]

\[
P_{\mu\nu}(E, \hat{n}) = \text{Standard polarization} + \text{Planck } 1303.5081
\]

Blackbody

Intensity spectral distortions

Polarization spectral distortions
Intensity y-type distortions

\[I(E, \hat{n}) = I_{BB} \left(\frac{E}{T(\hat{n})} \right) + y(\hat{n}) D_E^2 I_{BB} \left(\frac{E}{T(\hat{n})} \right) \]

Energy

direction of photon propagation

Number density of photons:

\[n \propto \int I E^3 \, d \ln E \]

T: temperature of a blackbody that would have the same number density

see Pitrou, Stebbins, 1402.0968
Polarization y-type distortions

\[P_{\mu\nu}(E, \hat{n}) = -\mathcal{P}_{\mu\nu}(\hat{n}) \frac{\partial}{\partial \ln E} I_{BB} \left(\frac{E}{T(\hat{n})} \right) + y_{\mu\nu}(\hat{n}) D^2_E I_{BB} \left(\frac{E}{T(\hat{n})} \right) \]

- Polarization tensor
- 'Standard polarization'
- Polarization distortion

E and B modes

E^y and B^y modes

- Similarly to \(y \), Compton scattering generates a non-zero polarization distortion only beyond first-order perturbation theory.

- Need for polarized Boltzmann equation at second order, with proper spectral dependence decomposition.

Naruko, Pitrou, Koyama, Sasaki 1304.6929
\(T_0 = 2.73 \text{ K} \)

- **Blackbody spectrum**
 \[\left(\frac{E}{T_0} \right)^3 I_{BB}(E/T_0) \]

- **Standard polarization**
 \[\left(\frac{E}{T_0} \right)^3 \frac{\partial I_{BB}(E/T_0)}{\partial \ln E} \]

- **Polarization distortion**
 \[\left(\frac{E}{T_0} \right)^3 D_E^2 I_{BB}(E/T_0) \]
Boltzmann equation for polarization distortion

Boltzmann equation:

\[
y'_{ij} + n^l \partial_l y_{ij} = \tau' (-y_{ij} + C_{ij}^y)
\]

Thomson interaction rate

\[
\tau' \equiv a n_e \sigma_T
\]

Line of sight formal solution

\[
y_{ij}(\eta_0, k_i, n^i) = \int_{\eta_0}^{\eta_0} d\eta \tau' e^{-\tau} e^{-i k_i n^i (\eta_0 - \eta)} C_{ij}^y(\eta, k_i, n^i)
\]

Visibility function

\[
g(\eta) = \tau' e^{-\tau}
\]
Non-linear kSZ effect

Leading-order collision term:

\[C_{ij}^{\text{y (L.O.)}} = -\frac{1}{10} \left[v_i \, v_j \right]_{\text{TT}} \]

Difference between the first-order electron and photon velocities. Grows after recombination.

Main signal originates from reionization (z < 15)
• E^y and B^y modes of similar magnitude (same sources)

• Smooth spectra (no acoustic oscillation structure)

• Naive suppression for a second-order effect mitigated by the growth of the electron velocity
Non-linear kSZ effect from clusters

- The same effect is discussed in the context of galaxy clusters
 astro-ph/0307293, astro-ph/0208511 ...

- Our signal is **one order of magnitude larger**

Simple understanding:

- on angular scales at which clusters are unresolved, \(\ell \lesssim 500 \), linear description is enough to model the electron number density

- additional contribution pre-formation of clusters, for \(2 \lesssim z \lesssim 12 \), when the visibility function is the largest.
Improving the detectability with cross-correlations

- **Standard polarization** has a similar contribution

\[\mathcal{P}_{\mu\nu} = (\mathcal{P}_{\mu\nu})_{\text{linear}} + 4 (y_{\mu\nu})_{kSZ} \]

\[\langle E^{\text{st}} E^{y*} \rangle = 4 \langle E^y E^{y*} \rangle \]

\[\langle B^{\text{st}} B^{y*} \rangle = 4 \langle B^y B^{y*} \rangle \]

- Correlation with the **y-type intensity distortion** (sourced by tSZ effect + non-linear kSZ effect)
Effects of an extended period of reionization

- Reionization history is unknown but is necessarily more complicated than the simple scenario of instantaneous reionization.

\[x_e(z) \equiv \frac{n_e(z)}{n_H(z)} = \frac{1}{2} \left\{ 1 + \tanh \left[\frac{(1 + z_r)^{3/2} - (1 + z)^{3/2}}{\Delta} \right] \right\} \]

built such that total optical depth independent of Delta.
Effects of an extended period of reionization

- Reionization history is unknown but is necessarily more complicated than the simple scenario of instantaneous reionization.

\[x_e(z) \equiv \frac{n_e(z)}{n_H(z)} = \frac{1}{2} \left\{ 1 + \tanh \left[\frac{(1+z_r)^{3/2} - (1+z)^{3/2}}{\Delta} \right] \right\} \]

built such that total optical depth independent of Delta.

Mere 2% effect for Delta=3. Effects studied here: robust probe of the optical depth to reionization (not details of the reionization history).
Conclusions

• CMB spectral distortions: new promising observational window in cosmology

• Probe of the thermal history of the universe, inflation, dark matter, reionization...

• It should be studied at the level of the anisotropies of the intensity and polarization

• First step in this direction: unavoidable contribution to polarization distortion generated by non-linear kSZ effect from reionization. Larger than contribution from clusters.